Rev 1009 |
Rev 1217 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/********************************************************************************************
** iLand - an individual based forest landscape and disturbance model
** http://iland.boku.ac.at
** Copyright (C) 2009- Werner Rammer, Rupert Seidl
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
********************************************************************************************/
#include "global.h"
#include "dem.h"
#include "globalsettings.h"
#include "model.h"
#include "gisgrid.h"
// from here: http://www.scratchapixel.com/lessons/3d-advanced-lessons/interpolation/bilinear-interpolation/
template<typename T>
T bilinear(
const T &tx,
const T &ty,
const T &c00,
const T &c10,
const T &c01,
const T &c11)
{
#if 1
T a = c00 * (T(1) - tx) + c10 * tx;
T b = c01 * (T(1) - tx) + c11 * tx;
return a * (T(1) - ty) + b * ty;
#else
return (T(1) - tx) * (T(1) - ty) * c00 +
tx * (T(1) - ty) * c10 +
(T(1) - tx) * ty * c01 +
tx * ty * c11;
#endif
}
/// loads a DEM from a ESRI style text file.
/// internally, the DEM has always a resolution of 10m
bool DEM::loadFromFile(const QString &fileName)
{
if (!GlobalSettings::instance()->model())
throw IException("DEM::create10mGrid: no valid model to retrieve height grid.");
HeightGrid *h_grid = GlobalSettings::instance()->model()->heightGrid();
if (!h_grid || h_grid->isEmpty())
throw IException("GisGrid::create10mGrid: no valid height grid to copy grid size.");
GisGrid gis_grid;
if (!gis_grid.loadFromFile(fileName))
throw IException(QString("Unable to load DEM file %1").arg(fileName));
// create a grid with the same size as the height grid
// (height-grid: 10m size, covering the full extent)
clear();
aspect_grid.clear();
slope_grid.clear();
view_grid.clear();
setup(h_grid->metricRect(),h_grid->cellsize());
const QRectF &world = GlobalSettings::instance()->model()->extent();
if (fmod(gis_grid.cellSize(), cellsize()) != 0) {
QPointF p;
// simple copy of the data
for (int i=0;i<count();i++) {
p = cellCenterPoint(indexOf(i));
if (gis_grid.value(p) != gis_grid.noDataValue() && world.contains(p) )
valueAtIndex(i) = gis_grid.value(p);
else
valueAtIndex(i) = -1;
}
} else {
// bilinear approximation approach
qDebug() << "DEM: built-in bilinear interpolation from cell size" << gis_grid.cellSize();
int f = gis_grid.cellSize() / cellsize(); // size-factor
initialize(-1.f);
int ixmin = 10000000, iymin = 1000000, ixmax = -1, iymax = -1;
for (int y=0;y<gis_grid.rows();++y)
for (int x=0;x<gis_grid.cols(); ++x){
Vector3D p3d = gis_grid.coord(x,y);
if (world.contains(p3d.x(), p3d.y())) {
QPoint pt=indexAt(QPointF(p3d.x(), p3d.y()));
valueAt(p3d.x(), p3d.y()) = gis_grid.value(x,y);
ixmin = std::min(ixmin, pt.x()); ixmax=std::max(ixmax, pt.x());
iymin = std::min(iymin, pt.y()); iymax=std::max(iymax, pt.y());
}
}
for (int y=iymin;y<=iymax-f;y+=f)
for (int x=ixmin;x<=ixmax-f;x+=f){
float c00 = valueAtIndex(x, y);
float c10 = valueAtIndex(x+f, y);
float c01 = valueAtIndex(x, y+f);
float c11 = valueAtIndex(x+f, y+f);
for (int my=0;my<f;++my)
for (int mx=0;mx<f;++mx)
valueAtIndex(x+mx, y+my) = bilinear<float>(mx/float(f), my/float(f), c00, c10, c01, c11);
}
}
return true;
}
/// calculate slope and aspect at a given point.
/// results are params per reference.
/// returns the height at point (x/y)
/// calculation follows: Burrough, P. A. and McDonell, R.A., 1998.Principles of Geographical Information Systems.(Oxford University Press, New York), p. 190.
/// http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4280125/Principles%20of%20Geographical%20Information%20Systems.pdf
/// @param point metric coordinates of point to derive orientation
/// @param rslope_angle RESULTING (passed by reference) slope angle as percentage (i.e: 1:=45 degrees)
/// @param rslope_aspect RESULTING slope direction in degrees (0: North, 90: east, 180: south, 270: west)
float DEM::orientation(const QPointF &point, float &rslope_angle, float &rslope_aspect) const
{
QPoint pt = indexAt(point);
if (pt.x()>0 && pt.x()<sizeX()+1 && pt.y()>0 && pt.y()<sizeY()-1) {
float *p = const_cast<DEM*>(this)->ptr(pt.x(), pt.y());
float z2 = *(p-sizeX());
float z4 = *(p-1);
float z6 = *(p+1);
float z8 = *(p+sizeX());
float g = (-z4 + z6) / (2*cellsize());
float h = (z2 - z8) / (2*cellsize());
if (z2<=0. || z4<=0. || z6<=0. || z8<=0) {
rslope_angle = 0.;
rslope_aspect = 0.;
return *p;
}
rslope_angle = sqrt(g*g + h*h);
// atan2: returns -pi : +pi
// North: -pi/2, east: 0, south: +pi/2, west: -pi/+pi
float aspect = atan2(-h, -g);
// transform to degree:
// north: 0, east: 90, south: 180, west: 270
aspect = aspect * 180. / M_PI + 360. + 90.;
aspect = fmod(aspect, 360.f);
rslope_aspect = aspect;
return *p;
} else {
rslope_angle = 0.;
rslope_aspect = 0.;
return 0.;
}
}
void DEM::createSlopeGrid() const
{
if (slope_grid.isEmpty()) {
// setup custom grids with the same size as this DEM
slope_grid.setup(*this);
view_grid.setup(*this);
aspect_grid.setup(*this);
} else {
return;
}
float *slope = slope_grid.begin();
float *view = view_grid.begin();
float *aspect = aspect_grid.begin();
// use fixed values for azimuth (315) and angle (45 deg) and calculate
// norm vectors
float sun_x = cos(315. * M_PI/180.) * cos(45.*M_PI/180.);
float sun_y = sin(315. * M_PI/180.) * cos(45.*M_PI/180.);
float sun_z = sin(45.*M_PI/180.);
float a_x, a_y, a_z;
for (float *p = begin(); p!=end(); ++p, ++slope, ++view, ++aspect) {
QPointF pt = cellCenterPoint(indexOf(p));
float height = orientation(pt, *slope, *aspect);
// calculate the view value:
if (height>0) {
float h = atan(*slope);
a_x = cos(*aspect * M_PI/180.) * cos(h);
a_y = sin(*aspect * M_PI/180.) * cos(h);
a_z = sin(h);
// use the scalar product to calculate the angle, and then
// transform from [-1,1] to [0,1]
*view = (a_x*sun_x + a_y*sun_y + a_z*sun_z + 1.)/2.;
} else {
*view = 0.;
}
}
}