(root)/src/output/carbonflowout.cpp - Rev 1222
Rev 1221 |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/********************************************************************************************
** iLand - an individual based forest landscape and disturbance model
** http://iland.boku.ac.at
** Copyright (C) 2009- Werner Rammer, Rupert Seidl
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
********************************************************************************************/
#include "carbonflowout.h"
#include "globalsettings.h"
#include "model.h"
#include "resourceunit.h"
#include "resourceunitspecies.h"
#include "production3pg.h"
#include "soil.h"
CarbonFlowOut::CarbonFlowOut()
{
setName("Carbon fluxes per RU or landscape/yr", "carbonflow");
setDescription("Carbon fluxes per resource unit and year and/or aggregated for the full landscape. All values are reported on a per hectare basis (use the area provided in carbon or stand outputs to scale to realized values on the respective resource unit). " \
"For results limited to the project area, the data values need to be scaled to the stockable area.\n" \
"For landsacpe level outputs, data is always given per ha of (stockable) project area (i.e. scaling with stockable area is already included).\n" \
"Furthermore, the following sign convention is used in iLand: fluxes "\
"from the atmosphere to the ecosystem are positive, while C leaving the ecosystem is reported as negative C flux.\n" \
"You can specify a 'condition' to limit output execution to specific years (variable 'year'). " \
"The 'conditionRU' can be used to suppress resource-unit-level details; eg. specifying 'in(year,100,200,300)' limits output on reosurce unit level to the years 100,200,300 " \
"(leaving 'conditionRU' blank enables details per default).");
columns() << OutputColumn::year() << OutputColumn::ru() << OutputColumn::id()
<< OutputColumn("area_ha", "total stockable area of the resource unit (or landscape) (ha)", OutDouble)
<< OutputColumn("GPP", "actually realized gross primary production, kg C; ((primary production|GPP)) including " \
"the effect of decreasing productivity with age; note that a rough estimate of "\
"((sapling growth and competition|#sapling C and N dynamics|sapling GPP)) is added to the GPP of adult trees here.", OutDouble)
<< OutputColumn("NPP", "net primary production, kg C; calculated as NPP=GPP-Ra; Ra, the autotrophic respiration (kg C/ha) is calculated as"\
" a fixed fraction of GPP in iLand (see ((primary production|here)) for details). ", OutDouble)
<< OutputColumn("Rh", "heterotrophic respiration, kg C; sum of C released to the atmosphere from detrital pools, i.e."\
" ((snag dynamics|#Snag decomposition|snags)), ((soil C and N cycling|downed deadwood, litter, and mineral soil)).", OutDouble)
<< OutputColumn("dist_loss", "disturbance losses, kg C; C that leaves the ecosystem as a result of disturbances, e.g. fire consumption", OutDouble)
<< OutputColumn("mgmt_loss", "management losses, kg C; C that leaves the ecosystem as a result of management interventions, e.g. harvesting", OutDouble)
<< OutputColumn("NEP", "net ecosytem productivity kg C, NEP=NPP - Rh - disturbance losses - management losses. "\
"Note that NEP is also equal to the total net changes over all ecosystem C pools, as reported in the "\
"carbon output (cf. [http://www.jstor.org/stable/3061028|Randerson et al. 2002])", OutDouble)
<< OutputColumn("cumNPP", "cumulative NPP, kg C. This is a running sum of NPP (including tree NPP and sapling carbon gain).", OutDouble)
<< OutputColumn("cumRh", "cumulative flux to atmosphere (heterotrophic respiration), kg C. This is a running sum of Rh.", OutDouble)
<< OutputColumn("cumNEP", "cumulative NEP (net ecosystem productivity), kg C. This is a running sum of NEP (positive values: carbon gain, negative values: carbon loss).", OutDouble);
}
void CarbonFlowOut::setup()
{
// use a condition for to control execuation for the current year
QString condition = settings().value(".condition", "");
mCondition.setExpression(condition);
condition = settings().value(".conditionRU", "");
mConditionDetails.setExpression(condition);
}
void CarbonFlowOut::exec()
{
Model *m = GlobalSettings::instance()->model();
// global condition
if (!mCondition.isEmpty() && mCondition.calculate(GlobalSettings::instance()->currentYear())==0.)
return;
bool ru_level = true;
// switch off details if this is indicated in the conditionRU option
if (!mConditionDetails.isEmpty() && mConditionDetails.calculate(GlobalSettings::instance()->currentYear())==0.)
ru_level = false;
double npp = 0.;
int ru_count = 0;
QVector<double> v(10, 0.); // 11 data values
QVector<double>::iterator vit;
foreach(ResourceUnit *ru, m->ruList()) {
if (ru->id()==-1)
continue; // do not include if out of project area
if (!ru->soil() || !ru->snag()) {
qDebug() << "CarbonFlowOut::exec: resource unit without soil or snags module - no output generated.";
continue;
}
npp = 0.;
double area_factor = ru->stockableArea() / cRUArea; //conversion factor
npp += ru->statistics().npp() * biomassCFraction; // kg C/ha
npp += ru->statistics().nppSaplings() * biomassCFraction; // kgC/ha
// Snag pools are not scaled per ha (but refer to the stockable RU), soil pools and biomass statistics (NPP, ...) are scaled.
double to_atm = ru->snag()->fluxToAtmosphere().C / area_factor; // from snags, kg/ha
to_atm += ru->soil()->fluxToAtmosphere().C * cRUArea/10.; // soil: t/ha -> t/m2 -> kg/ha
double to_dist = ru->snag()->fluxToDisturbance().C / area_factor; // convert to kgC/ha
to_dist += ru->soil()->fluxToDisturbance().C * cRUArea/10.; // kgC/ha
double to_harvest = ru->snag()->fluxToExtern().C / area_factor; // kgC/ha
double nep = npp - to_atm - to_harvest - to_dist; // kgC/ha
if (ru_level) {
*this << currentYear() << ru->index() << ru->id() << area_factor; // keys
*this << npp / cAutotrophicRespiration // GPP_act
<< npp // NPP
<< -to_atm // rh
<< -to_dist // disturbance
<< -to_harvest // management loss
<< nep; // nep
*this << ru->resouceUnitVariables().cumCarbonUptake << ru->resouceUnitVariables().cumCarbonToAtm << ru->resouceUnitVariables().cumNEP;
writeRow();
}
// landscape level
++ru_count;
vit = v.begin();
*vit++ += area_factor; // total area in ha
*vit++ += npp / cAutotrophicRespiration * area_factor; // GPP_act
*vit++ += npp * area_factor; // NPP
*vit++ += -to_atm * area_factor; // rh
*vit++ += -to_dist * area_factor; // disturbance
*vit++ += -to_harvest * area_factor; // management loss
*vit++ += nep *area_factor; // net ecosystem productivity
*vit++ += ru->resouceUnitVariables().cumCarbonUptake * area_factor; // cum. NPP
*vit++ += ru->resouceUnitVariables().cumCarbonToAtm * area_factor; // cum. Rh
*vit++ += ru->resouceUnitVariables().cumNEP * area_factor; // cum. NEP
}
// write landscape sums
double total_stockable_area = v[0]; // total ha of stockable area
if (ru_count==0. || total_stockable_area==0.)
return;
*this << currentYear() << -1 << -1; // codes -1/-1 for landscape level
*this << v[0]; // stockable area [m2]
for (int i=1;i<v.size();++i)
*this << v[i] / total_stockable_area;
writeRow();
}