(root)/src/core/speciesresponse.cpp - Rev 281
Rev 273 |
Rev 300 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
/** @class SpeciesResponse
Environmental responses relevant for production of a tree species on resource unit level.
SpeciesResponse combines data from different sources and converts information about the environment
into responses of a species. The spatial level is the "ResourceUnit", where homogenetiy of environmental factors
is assumed. The temporal aggregation depends on the factor, but usually, the daily environmental data is
aggregated to monthly response values (which subsequently are used during 3PG production).
Sources are:
- vapour pressure deficit (dryness of atmosphere): directly from climate data (daily)
- soil water status (dryness of soil): TODO (daily)
- temperature: directly from climate data (daily)
- phenology: @sa Phenology, combines several sources (quasi-monthly)
- CO2: @sa SpeciesSet::co2Response() based on ambient CO2 level (climate data), nitrogen and soil water responses (yearly)
- nitrogen: based on the amount of available nitrogen (yearly)
*/
#include "speciesresponse.h"
#include "resourceunit.h"
#include "species.h"
#include "resourceunitspecies.h"
#include "climate.h"
#include "model.h"
#include "watercycle.h"
SpeciesResponse::SpeciesResponse()
{
mSpecies=0;
mRu=0;
}
void SpeciesResponse::clear()
{
for (int i=0;i<12;i++)
mResponseMinima[i]=mVpdResponse[i]=mSoilWaterResponse[i]=mTempResponse[i]=mRadiation[i]=0.;
mCO2Response=mNitrogenResponse=mSoilWaterResponseYear=0.;
}
void SpeciesResponse::setup(ResourceUnitSpecies *rus)
{
mSpecies = rus->species();
mRu = rus->ru();
clear();
}
/// Main function that calculates monthly / annual species responses
void SpeciesResponse::calculate()
{
const ClimateDay *begin, *end;
double no_of_days;
clear(); // reset values
// calculate yearly responses
const WaterCycle *water = mRu->waterCycle();
const Phenology &pheno = mRu->climate()->phenology(mSpecies->phenologyClass());
int veg_begin = pheno.vegetationPeriodStart();
int veg_end = pheno.vegetationPeriodEnd();
// calculate monthly responses
int doy=0;
double water_resp;
double vpd_resp;
double temp_resp;
double min_resp;
for (int mon=0;mon<12;mon++) {
mRu->climate()->monthRange(mon, &begin, &end);
no_of_days = 0;
for (const ClimateDay *day=begin; day!=end; ++day, no_of_days++) {
// VPD response
vpd_resp =mSpecies->vpdResponse( day->vpd );
mVpdResponse[mon]+= vpd_resp;
// Temperature Response
temp_resp = mSpecies->temperatureResponse(day->temp_delayed);
mTempResponse[mon]+= temp_resp;
// radiation: only count days in vegetation period
water_resp = mSpecies->soilwaterResponse(water->psi_kPa(doy));
if (doy>=veg_begin && doy<=veg_end) {
mRadiation[mon] += day->radiation;
mSoilWaterResponseYear += water_resp;
}
// minimum response
min_resp = qMin(qMin(vpd_resp, temp_resp), water_resp);
mResponseMinima[mon] += min_resp;
// soil water: fake
mSoilWaterResponse[mon] += water_resp;
doy++;
}
mVpdResponse[mon] /= no_of_days; // vpd: average of month
mTempResponse[mon] /= no_of_days; // temperature: average value of daily responses
mSoilWaterResponse[mon] /= no_of_days; // water response: average of daily responses
mResponseMinima[mon] /= no_of_days; // minimum responses: average of daily responses
}
if (pheno.vegetationPeriodLength()>0)
mSoilWaterResponseYear /= pheno.vegetationPeriodLength();
const double ambient_co2 = mRu->climate()->begin()->co2; // CO2 level of first day of year
const double nitrogen = mRu->resouceUnitVariables().nitrogenAvailable;
// Nitrogen response: a yearly value based on available nitrogen
mNitrogenResponse = mSpecies->nitrogenResponse( nitrogen );
// CO2 response: a yearly value based on atmospheric CO2 concentration and the response to nutrients and water in the soil.
mCO2Response = mSpecies->speciesSet()->co2Response(ambient_co2,
mNitrogenResponse,
mSoilWaterResponseYear);
}