Subversion Repositories public iLand

Rev

Rev 1220 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

/********************************************************************************************
**    iLand - an individual based forest landscape and disturbance model
**    http://iland.boku.ac.at
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
**
**    This program is free software: you can redistribute it and/or modify
**    it under the terms of the GNU General Public License as published by
**    the Free Software Foundation, either version 3 of the License, or
**    (at your option) any later version.
**
**    This program is distributed in the hope that it will be useful,
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**    GNU General Public License for more details.
**
**    You should have received a copy of the GNU General Public License
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
********************************************************************************************/

#include "global.h"
#include "saplings.h"

#include "globalsettings.h"
#include "model.h"
#include "resourceunit.h"
#include "resourceunitspecies.h"
#include "establishment.h"
#include "species.h"
#include "seeddispersal.h"
#include "mapgrid.h"

double Saplings::mRecruitmentVariation = 0.1; // +/- 10%
double Saplings::mBrowsingPressure = 0.;


Saplings::Saplings()
{

}

void Saplings::setup()
{
    //mGrid.setup(GlobalSettings::instance()->model()->grid()->metricRect(), GlobalSettings::instance()->model()->grid()->cellsize());
    FloatGrid *lif_grid = GlobalSettings::instance()->model()->grid();
    // mask out out-of-project areas
    HeightGrid *hg = GlobalSettings::instance()->model()->heightGrid();
    for (int i=0; i<lif_grid->count(); ++i) {
        SaplingCell *s = cell(lif_grid->indexOf(i), false); // false: retrieve also invalid cells
        if (s) {
            if (!hg->valueAtIndex(lif_grid->index5(i)).isValid())
                s->state = SaplingCell::CellInvalid;
            else
                s->state = SaplingCell::CellFree;
        }

    }

}

void Saplings::calculateInitialStatistics(const ResourceUnit *ru)
{
    SaplingCell *sap_cells = ru->saplingCellArray();
    if (!sap_cells)
        return;

    SaplingCell *s = sap_cells;

    for (int i=0; i<cPxPerHectare; ++i, ++s) {
        if (s->state != SaplingCell::CellInvalid) {
            int cohorts_on_px = s->n_occupied();
            for (int j=0;j<NSAPCELLS;++j) {
                if (s->saplings[j].is_occupied()) {
                    SaplingTree &tree=s->saplings[j];
                    ResourceUnitSpecies *rus = tree.resourceUnitSpecies(ru);
                    rus->saplingStat().mLiving++;
                    double n_repr = rus->species()->saplingGrowthParameters().representedStemNumberH(tree.height) / static_cast<double>(cohorts_on_px);
                    if (tree.height>1.3f)
                        rus->saplingStat().mLivingSaplings += n_repr;
                    else
                        rus->saplingStat().mLivingSmallSaplings += n_repr;

                    rus->saplingStat().mAvgHeight+=tree.height;
                    rus->saplingStat().mAvgAge+=tree.age;

                }
            }
        }
    }


}

void Saplings::establishment(const ResourceUnit *ru)
{
    FloatGrid *lif_grid = GlobalSettings::instance()->model()->grid();

    QPoint imap = ru->cornerPointOffset(); // offset on LIF/saplings grid
    QPoint iseedmap = QPoint(imap.x()/10, imap.y()/10); // seed-map has 20m resolution, LIF 2m -> factor 10

    for (QList<ResourceUnitSpecies*>::const_iterator i=ru->ruSpecies().constBegin(); i!=ru->ruSpecies().constEnd(); ++i)
        (*i)->saplingStat().clearStatistics();

    double lif_corr[cPxPerHectare];
    for (int i=0;i<cPxPerHectare;++i)
        lif_corr[i]=-1.;

    int species_idx;
    QVector<int>::const_iterator sbegin, send;
    ru->speciesSet()->randomSpeciesOrder(sbegin, send);
    for (QVector<int>::const_iterator s_idx=sbegin; s_idx!=send;++s_idx) {

        // start from a random species (and cycle through the available species)
        species_idx = *s_idx;

        ResourceUnitSpecies *rus = ru->ruSpecies()[species_idx];
        rus->establishment().clear();

        // check if there are seeds of the given species on the resource unit
        float seeds = 0.f;
        Grid<float> &seedmap =  const_cast<Grid<float>& >(rus->species()->seedDispersal()->seedMap());
        for (int iy=0;iy<5;++iy) {
            float *p = seedmap.ptr(iseedmap.x(), iseedmap.y());
            for (int ix=0;ix<5;++ix)
                seeds += *p++;
        }
        // if there are no seeds: no need to do more
        if (seeds==0.f)
            continue;

        // calculate the abiotic environment (TACA)
        rus->establishment().calculateAbioticEnvironment();
        double abiotic_env = rus->establishment().abioticEnvironment();
        if (abiotic_env==0.) {
            rus->establishment().writeDebugOutputs();
            continue;
        }

        // loop over all 2m cells on this resource unit
        SaplingCell *sap_cells = ru->saplingCellArray();
        SaplingCell *s;
        int isc = 0; // index on 2m cell
        for (int iy=0; iy<cPxPerRU; ++iy) {
            s = &sap_cells[iy*cPxPerRU]; // pointer to a row
            isc = lif_grid->index(imap.x(), imap.y()+iy);

            for (int ix=0;ix<cPxPerRU; ++ix, ++s, ++isc) {
                if (s->state == SaplingCell::CellFree) {
                    // is a sapling of the current species already on the pixel?
                    // * test for sapling height already in cell state
                    // * test for grass-cover already in cell state
                    SaplingTree *stree=0;
                    SaplingTree *slot=s->saplings;
                    for (int i=0;i<NSAPCELLS;++i, ++slot) {
                        if (!stree && !slot->is_occupied())
                            stree=slot;
                        if (slot->species_index == species_idx) {
                            stree=0;
                            break;
                        }
                    }

                    if (stree) {
                        // grass cover?
                        float seed_map_value = seedmap[lif_grid->index10(isc)];
                        if (seed_map_value==0.f)
                            continue;
                        float lif_value = (*lif_grid)[isc];

                        double &lif_corrected = lif_corr[iy*cPxPerRU+ix];
                        // calculate the LIFcorrected only once per pixel; the relative height is 0 (light level on the forest floor)
                        if (lif_corrected<0.)
                            lif_corrected = rus->species()->speciesSet()->LRIcorrection(lif_value, 0.);

                        // check for the combination of seed availability and light on the forest floor
                        if (drandom() < seed_map_value*lif_corrected*abiotic_env ) {
                            // ok, lets add a sapling at the given position (age is incremented later)
                            stree->setSapling(0.05f, 0, species_idx);
                            s->checkState();
                            rus->saplingStat().mAdded++;

                        }

                    }

                }
            }
        }
        // create debug output related to establishment
        rus->establishment().writeDebugOutputs();
    }

}

void Saplings::saplingGrowth(const ResourceUnit *ru)
{
    HeightGrid *height_grid = GlobalSettings::instance()->model()->heightGrid();
    FloatGrid *lif_grid = GlobalSettings::instance()->model()->grid();

    QPoint imap = ru->cornerPointOffset();
    bool need_check=false;
    SaplingCell *sap_cells = ru->saplingCellArray();

    for (int iy=0; iy<cPxPerRU; ++iy) {
        SaplingCell *s = &sap_cells[iy*cPxPerRU]; // ptr to row
        int isc = lif_grid->index(imap.x(), imap.y()+iy);

        for (int ix=0;ix<cPxPerRU; ++ix, ++s, ++isc) {
            if (s->state != SaplingCell::CellInvalid) {
                need_check=false;
                int n_on_px = s->n_occupied();
                for (int i=0;i<NSAPCELLS;++i) {
                    if (s->saplings[i].is_occupied()) {
                        // growth of this sapling tree
                        const HeightGridValue &hgv = (*height_grid)[height_grid->index5(isc)];
                        float lif_value = (*lif_grid)[isc];

                        need_check |= growSapling(ru, *s, s->saplings[i], isc, hgv.height, lif_value, n_on_px);
                    }
                }
                if (need_check)
                    s->checkState();

            }
        }
    }


    // store statistics on saplings/regeneration
    for (QList<ResourceUnitSpecies*>::const_iterator i=ru->ruSpecies().constBegin(); i!=ru->ruSpecies().constEnd(); ++i) {
        (*i)->saplingStat().calculate((*i)->species(), const_cast<ResourceUnit*>(ru));
        (*i)->statistics().add(&((*i)->saplingStat()));
    }

    // debug output related to saplings
    if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dSaplingGrowth)) {

        // establishment details
        for (QList<ResourceUnitSpecies*>::const_iterator it=ru->ruSpecies().constBegin();it!=ru->ruSpecies().constEnd();++it) {
            if ((*it)->saplingStat().livingCohorts() == 0)
                continue;
            DebugList &out = GlobalSettings::instance()->debugList(ru->index(), GlobalSettings::dSaplingGrowth);
            out << (*it)->species()->id() << ru->index() <<ru->id();
            out << (*it)->saplingStat().livingCohorts() << (*it)->saplingStat().averageHeight() << (*it)->saplingStat().averageAge()
                << (*it)->saplingStat().averageDeltaHPot() << (*it)->saplingStat().averageDeltaHRealized();
            out << (*it)->saplingStat().newSaplings() << (*it)->saplingStat().diedSaplings()
                << (*it)->saplingStat().recruitedSaplings() <<(*it)->species()->saplingGrowthParameters().referenceRatio;
        }
    }

}

SaplingCell *Saplings::cell(QPoint lif_coords, bool only_valid, ResourceUnit **rRUPtr)
{
    FloatGrid *lif_grid = GlobalSettings::instance()->model()->grid();

    // in this case, getting the actual cell is quite cumbersome: first, retrieve the resource unit, then the
    // cell based on the offset of the given coordiantes relative to the corner of the resource unit.
    ResourceUnit *ru = GlobalSettings::instance()->model()->ru(lif_grid->cellCenterPoint(lif_coords));
    if (rRUPtr)
        *rRUPtr = ru;

    if (ru) {
        QPoint local_coords = lif_coords - ru->cornerPointOffset();
        int idx = local_coords.y() * cPxPerRU + local_coords.x();
        DBGMODE( if (idx<0 || idx>=cPxPerHectare)
                 qDebug("invalid coords in Saplings::cell");
                    );
        SaplingCell *s=&ru->saplingCellArray()[idx];
        if (s && (!only_valid || s->state!=SaplingCell::CellInvalid))
            return s;
    }
    return 0;
}

void Saplings::clearSaplings(const QRectF &rectangle, const bool remove_biomass)
{
    GridRunner<float> runner(GlobalSettings::instance()->model()->grid(), rectangle);
    ResourceUnit *ru;
    while (runner.next()) {
        SaplingCell *s = cell(runner.currentIndex(), true, &ru);
        if (s) {
            clearSaplings(s, ru, remove_biomass);
        }

    }
}

void Saplings::clearSaplings(SaplingCell *s, ResourceUnit *ru, const bool remove_biomass)
{
    if (s) {
        for (int i=0;i<NSAPCELLS;++i)
            if (s->saplings[i].is_occupied()) {
                if (!remove_biomass) {
                    ResourceUnitSpecies *rus = s->saplings[i].resourceUnitSpecies(ru);
                    if (!rus && !rus->species()) {
                        qDebug() << "Saplings::clearSaplings(): invalid resource unit!!!";
                        return;
                    }
                    rus->saplingStat().addCarbonOfDeadSapling( s->saplings[i].height / rus->species()->saplingGrowthParameters().hdSapling * 100.f );
                }
                s->saplings[i].clear();
            }
        s->checkState();

    }

}

int Saplings::addSprout(const Tree *t)
{
    if (t->species()->saplingGrowthParameters().sproutGrowth==0.)
        return 0;
    SaplingCell *sc = cell(t->positionIndex());
    if (!sc)
        return 0;
    clearSaplings(sc, const_cast<ResourceUnit*>(t->ru()), false );
    SaplingTree *st=sc->addSapling(0.05f, 0, t->species()->index());
    if (st)
        st->set_sprout(true);

    // neighboring cells
    double crown_area = t->crownRadius()*t->crownRadius() * M_PI; //m2
    // calculate how many cells on the ground are covered by the crown (this is a rather rough estimate)
    // n_cells: in addition to the original cell
    int n_cells = static_cast<int>(round( crown_area / static_cast<double>(cPxSize*cPxSize) - 1.));
    if (n_cells>0) {
        ResourceUnit *ru;
        static const int offsets_x[8] = {1,1,0,-1,-1,-1,0,1};
        static const int offsets_y[8] = {0,1,1,1,0,-1,-1,-1};
        int s=irandom(0,8);
        while(n_cells) {
            sc = cell(t->positionIndex()+QPoint(offsets_x[s], offsets_y[s]),true,&ru);
            if (sc) {
                clearSaplings(sc, ru, false );
                SaplingTree *st=sc->addSapling(0.05f, 0, t->species()->index());
                if (st)
                    st->set_sprout(true);
            }

            s = (s+1)%8; --n_cells;
        }
    }
    return 1;
}

void Saplings::updateBrowsingPressure()
{
    if (GlobalSettings::instance()->settings().valueBool("model.settings.browsing.enabled"))
        Saplings::mBrowsingPressure = GlobalSettings::instance()->settings().valueDouble("model.settings.browsing.browsingPressure");
    else
        Saplings::mBrowsingPressure = 0.;
}

bool Saplings::growSapling(const ResourceUnit *ru, SaplingCell &scell, SaplingTree &tree, int isc, float dom_height, float lif_value, int cohorts_on_px)
{
    ResourceUnitSpecies *rus = tree.resourceUnitSpecies(ru);

    const Species *species = rus->species();

    // (1) calculate height growth potential for the tree (uses linerization of expressions...)
    double h_pot = species->saplingGrowthParameters().heightGrowthPotential.calculate(tree.height);
    double delta_h_pot = h_pot - tree.height;

    // (2) reduce height growth potential with species growth response f_env_yr and with light state (i.e. LIF-value) of home-pixel.
    if (dom_height==0.f)
        throw IException(QString("growSapling: height grid at %1/%2 has value 0").arg(isc));

    double rel_height = tree.height / dom_height;

    double lif_corrected = species->speciesSet()->LRIcorrection(lif_value, rel_height); // correction based on height

    double lr = species->lightResponse(lif_corrected); // species specific light response (LUI, light utilization index)

    rus->calculate(true); // calculate the 3pg module (this is done only once per RU); true: call comes from regeneration
    double f_env_yr = rus->prod3PG().fEnvYear();

    double delta_h_factor = f_env_yr * lr; // relative growth

    if (h_pot<0. || delta_h_pot<0. || lif_corrected<0. || lif_corrected>1. || delta_h_factor<0. || delta_h_factor>1. )
        qDebug() << "invalid values in Sapling::growSapling";

    // sprouts grow faster. Sprouts therefore are less prone to stress (threshold), and can grow higher than the growth potential.
    if (tree.is_sprout())
        delta_h_factor = delta_h_factor *species->saplingGrowthParameters().sproutGrowth;

    // check browsing
    if (mBrowsingPressure>0. && tree.height<=2.f) {
        double p = rus->species()->saplingGrowthParameters().browsingProbability;
        // calculate modifed annual browsing probability via odds-ratios
        // odds = p/(1-p) -> odds_mod = odds * browsingPressure -> p_mod = odds_mod /( 1 + odds_mod) === p*pressure/(1-p+p*pressure)
        double p_browse = p*mBrowsingPressure / (1. - p + p*mBrowsingPressure);
        if (drandom() < p_browse) {
            delta_h_factor = 0.;
        }
    }

    // check mortality of saplings
    if (delta_h_factor < species->saplingGrowthParameters().stressThreshold) {
        tree.stress_years++;
        if (tree.stress_years > species->saplingGrowthParameters().maxStressYears) {
            // sapling dies...
            rus->saplingStat().addCarbonOfDeadSapling( tree.height / species->saplingGrowthParameters().hdSapling * 100.f );
            tree.clear();
            return true; // need cleanup
        }
    } else {
        tree.stress_years=0; // reset stress counter
    }
    DBG_IF(delta_h_pot*delta_h_factor < 0.f || (!tree.is_sprout() && delta_h_pot*delta_h_factor > 2.), "Sapling::growSapling", "inplausible height growth.");

    // grow
    tree.height += delta_h_pot * delta_h_factor;
    tree.age++; // increase age of sapling by 1

    // recruitment?
    if (tree.height > 4.f) {
        rus->saplingStat().mRecruited++;

        float dbh = tree.height / species->saplingGrowthParameters().hdSapling * 100.f;
        // the number of trees to create (result is in trees per pixel)
        double n_trees = species->saplingGrowthParameters().representedStemNumber(dbh);
        int to_establish = static_cast<int>( n_trees );

        // if n_trees is not an integer, choose randomly if we should add a tree.
        // e.g.: n_trees = 2.3 -> add 2 trees with 70% probability, and add 3 trees with p=30%.
        if (drandom() < (n_trees-to_establish) || to_establish==0)
            to_establish++;

        // add a new tree
        for (int i=0;i<to_establish;i++) {
            Tree &bigtree = const_cast<ResourceUnit*>(ru)->newTree();

            bigtree.setPosition(GlobalSettings::instance()->model()->grid()->indexOf(isc));
            // add variation: add +/-N% to dbh and *independently* to height.
            bigtree.setDbh(static_cast<float>(dbh * nrandom(1. - mRecruitmentVariation, 1. + mRecruitmentVariation)));
            bigtree.setHeight(static_cast<float>(tree.height * nrandom(1. - mRecruitmentVariation, 1. + mRecruitmentVariation)));
            bigtree.setSpecies( const_cast<Species*>(species) );
            bigtree.setAge(tree.age,tree.height);
            bigtree.setRU(const_cast<ResourceUnit*>(ru));
            bigtree.setup();
            const Tree *t = &bigtree;
            const_cast<ResourceUnitSpecies*>(rus)->statistics().add(t, 0); // count the newly created trees already in the stats
        }
        // clear all regeneration from this pixel (including this tree)
        tree.clear(); // clear this tree (no carbon flow to the ground)
        for (int i=0;i<NSAPCELLS;++i) {
            if (scell.saplings[i].is_occupied()) {
                // add carbon to the ground
                ResourceUnitSpecies *srus = scell.saplings[i].resourceUnitSpecies(ru);
                srus->saplingStat().addCarbonOfDeadSapling( scell.saplings[i].height / srus->species()->saplingGrowthParameters().hdSapling * 100.f );
                scell.saplings[i].clear();
            }
        }
        return true; // need cleanup
    }
    // book keeping (only for survivors) for the sapling of the resource unit / species
    SaplingStat &ss = rus->saplingStat();
    double n_repr = species->saplingGrowthParameters().representedStemNumberH(tree.height) / static_cast<double>(cohorts_on_px);
    if (tree.height>1.3f)
        ss.mLivingSaplings += n_repr;
    else
        ss.mLivingSmallSaplings += n_repr;
    ss.mLiving++;
    ss.mAvgHeight+=tree.height;
    ss.mAvgAge+=tree.age;
    ss.mAvgDeltaHPot+=delta_h_pot;
    ss.mAvgHRealized += delta_h_pot * delta_h_factor;
    return false;
}

void SaplingStat::clearStatistics()
{
    mRecruited=mDied=mLiving=0;
    mLivingSaplings=0.; mLivingSmallSaplings=0.;
    mSumDbhDied=0.;
    mAvgHeight=0.;
    mAvgAge=0.;
    mAvgDeltaHPot=mAvgHRealized=0.;
    mAdded=0;

}

void SaplingStat::calculate(const Species *species, ResourceUnit *ru)
{
    if (mLiving) {
        mAvgHeight /= double(mLiving);
        mAvgAge /= double(mLiving);
        mAvgDeltaHPot /= double(mLiving);
        mAvgHRealized /= double(mLiving);
    }
    if (GlobalSettings::instance()->currentYear()==0)
        return; // no need for carbon flows in initial run

    // calculate carbon balance
    CNPair old_state = mCarbonLiving;
    mCarbonLiving.clear();

    CNPair dead_wood, dead_fine; // pools for mortality
    // average dbh
    if (mLiving>0) {
        // calculate the avg dbh and number of stems
        double avg_dbh = mAvgHeight / species->saplingGrowthParameters().hdSapling * 100.;
        // the number of "real" stems is given by the Reineke formula
        double n = mLivingSaplings; // total number of saplings (>0.05m)

        // woody parts: stem, branchse and coarse roots
        double woody_bm = species->biomassWoody(avg_dbh) + species->biomassBranch(avg_dbh) + species->biomassRoot(avg_dbh);
        double foliage = species->biomassFoliage(avg_dbh);
        double fineroot = foliage*species->finerootFoliageRatio();

        mCarbonLiving.addBiomass( woody_bm*n, species->cnWood()  );
        mCarbonLiving.addBiomass( foliage*n, species->cnFoliage()  );
        mCarbonLiving.addBiomass( fineroot*n, species->cnFineroot()  );

        DBGMODE(
        if (isnan(mCarbonLiving.C))
            qDebug("carbon NaN in SaplingStat::calculate (living trees).");
                );

        // turnover
        if (ru->snag())
            ru->snag()->addTurnoverLitter(species, foliage*species->turnoverLeaf(), fineroot*species->turnoverRoot());

        // calculate the "mortality from competition", i.e. carbon that stems from reduction of stem numbers
        // from Reinekes formula.
        //
        if (avg_dbh>1.) {
            double avg_dbh_before = (mAvgHeight - mAvgHRealized) / species->saplingGrowthParameters().hdSapling * 100.;
            double n_before = mLiving * species->saplingGrowthParameters().representedStemNumber( qMax(1.,avg_dbh_before) );
            if (n<n_before) {
                dead_wood.addBiomass( woody_bm * (n_before-n), species->cnWood() );
                dead_fine.addBiomass( foliage * (n_before-n), species->cnFoliage()  );
                dead_fine.addBiomass( fineroot * (n_before-n), species->cnFineroot()  );
                DBGMODE(
                if (isnan(dead_fine.C))
                    qDebug("carbon NaN in SaplingStat::calculate (self thinning).");
                        );

            }
        }

    }
    if (mDied) {
        double avg_dbh_dead = mSumDbhDied / double(mDied);
        double n = mDied * species->saplingGrowthParameters().representedStemNumber( avg_dbh_dead );
        // woody parts: stem, branchse and coarse roots

        dead_wood.addBiomass( ( species->biomassWoody(avg_dbh_dead) + species->biomassBranch(avg_dbh_dead) + species->biomassRoot(avg_dbh_dead)) * n, species->cnWood()  );
        double foliage = species->biomassFoliage(avg_dbh_dead)*n;

        dead_fine.addBiomass( foliage, species->cnFoliage()  );
        dead_fine.addBiomass( foliage*species->finerootFoliageRatio(), species->cnFineroot()  );
        DBGMODE(
        if (isnan(dead_fine.C))
            qDebug("carbon NaN in SaplingStat::calculate (died trees).");
                );

    }
    if (!dead_wood.isEmpty() || !dead_fine.isEmpty())
        if (ru->snag())
            ru->snag()->addToSoil(species, dead_wood, dead_fine);

    // calculate net growth:
    // delta of stocks
    mCarbonGain = mCarbonLiving + dead_fine + dead_wood - old_state;
    if (mCarbonGain.C < 0)
        mCarbonGain.clear();


    GlobalSettings::instance()->systemStatistics()->saplingCount+=mLiving;
    GlobalSettings::instance()->systemStatistics()->newSaplings+=mAdded;

}

double SaplingStat::livingStemNumber(const Species *species, double &rAvgDbh, double &rAvgHeight, double &rAvgAge) const
{
     rAvgHeight = averageHeight();
     rAvgDbh = rAvgHeight / species->saplingGrowthParameters().hdSapling * 100.f;
     rAvgAge = averageAge();
     double n= species->saplingGrowthParameters().representedStemNumber(rAvgDbh);
     return n;
// *** old code (sapling.cpp) ***
//    double total = 0.;
//    double dbh_sum = 0.;
//    double h_sum = 0.;
//    double age_sum = 0.;
//    const SaplingGrowthParameters &p = mRUS->species()->saplingGrowthParameters();
//    for (QVector<SaplingTreeOld>::const_iterator it = mSaplingTrees.constBegin(); it!=mSaplingTrees.constEnd(); ++it) {
//        float dbh = it->height / p.hdSapling * 100.f;
//        if (dbh<1.) // minimum size: 1cm
//            continue;
//        double n = p.representedStemNumber(dbh); // one cohort on the pixel represents that number of trees
//        dbh_sum += n*dbh;
//        h_sum += n*it->height;
//        age_sum += n*it->age.age;
//        total += n;
//    }
//    if (total>0.) {
//        dbh_sum /= total;
//        h_sum /= total;
//        age_sum /= total;
//    }
//    rAvgDbh = dbh_sum;
//    rAvgHeight = h_sum;
//    rAvgAge = age_sum;
//    return total;
}

ResourceUnitSpecies *SaplingTree::resourceUnitSpecies(const ResourceUnit *ru)
{
    if (!ru || !is_occupied())
        return 0;
    ResourceUnitSpecies *rus = ru->resourceUnitSpecies(species_index);
    return rus;
}

SaplingCellRunner::SaplingCellRunner(const int stand_id, const MapGrid *stand_grid)
{
    mRunner = 0;
    mRU = 0;
    mStandId = stand_id;
    mStandGrid = stand_grid ? stand_grid : GlobalSettings::instance()->model()->standGrid();
    QRectF box = mStandGrid->boundingBox(stand_id);
    mRunner = new GridRunner<float>(GlobalSettings::instance()->model()->grid(), box);

}

SaplingCellRunner::~SaplingCellRunner()
{
    if (mRunner)
        delete mRunner;
}

SaplingCell *SaplingCellRunner::next()
{
    if (!mRunner)
        return 0;
    while (float *n = mRunner->next()) {
        if (!n)
            return 0; // end of the bounding box
        if (mStandGrid->standIDFromLIFCoord(mRunner->currentIndex()) != mStandId)
            continue; // pixel does not belong to the target stand
        mRU = GlobalSettings::instance()->model()->ru(mRunner->currentCoord());
        SaplingCell *sc=0;
        if (mRU)
            sc=mRU->saplingCell(mRunner->currentIndex());
        if (sc)
            return sc;
        qDebug() << "SaplingCellRunner::next(): unexected missing SaplingCell!";
        return 0;
    }
    return 0;
}

QPointF SaplingCellRunner::currentCoord() const
{
    return mRunner->currentCoord();
}