Subversion Repositories public iLand

Rev

Rev 1221 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
671 werner 1
/********************************************************************************************
2
**    iLand - an individual based forest landscape and disturbance model
3
**    http://iland.boku.ac.at
4
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
5
**
6
**    This program is free software: you can redistribute it and/or modify
7
**    it under the terms of the GNU General Public License as published by
8
**    the Free Software Foundation, either version 3 of the License, or
9
**    (at your option) any later version.
10
**
11
**    This program is distributed in the hope that it will be useful,
12
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
13
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
**    GNU General Public License for more details.
15
**
16
**    You should have received a copy of the GNU General Public License
17
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
********************************************************************************************/
19
 
373 werner 20
#include "seeddispersal.h"
21
 
22
#include "globalsettings.h"
23
#include "model.h"
808 werner 24
#include "debugtimer.h"
373 werner 25
#include "helper.h"
391 werner 26
#include "species.h"
989 werner 27
#ifdef ILAND_GUI
373 werner 28
#include <QtGui/QImage>
989 werner 29
#endif
373 werner 30
 
31
/** @class SeedDispersal
697 werner 32
    @ingroup core
373 werner 33
    The class encapsulates the dispersal of seeds of one species over the whole landscape.
697 werner 34
    The dispersal algortihm operate on grids with a 20m resolution.
373 werner 35
 
697 werner 36
    See http://iland.boku.ac.at/dispersal
37
 
373 werner 38
  */
764 werner 39
 
40
Grid<float> *SeedDispersal::mExternalSeedBaseMap = 0;
41
QHash<QString, QVector<double> > SeedDispersal::mExtSeedData;
42
int SeedDispersal::mExtSeedSizeX = 0;
43
int SeedDispersal::mExtSeedSizeY = 0;
44
 
373 werner 45
SeedDispersal::~SeedDispersal()
46
{
47
    if (isSetup()) {
48
 
49
    }
50
}
51
 
391 werner 52
// ************ Setup **************
53
 
54
/** setup of the seedmaps.
55
  This sets the size of the seed map and creates the seed kernel (species specific)
56
  */
373 werner 57
void SeedDispersal::setup()
58
{
391 werner 59
    if (!GlobalSettings::instance()->model()
60
        || !GlobalSettings::instance()->model()->heightGrid()
61
        || !mSpecies)
373 werner 62
        return;
1180 werner 63
    mProbMode = false;
391 werner 64
 
65
    const float seedmap_size = 20.f;
373 werner 66
    // setup of seed map
67
    mSeedMap.clear();
391 werner 68
    mSeedMap.setup(GlobalSettings::instance()->model()->heightGrid()->metricRect(), seedmap_size );
373 werner 69
    mSeedMap.initialize(0.);
1180 werner 70
    if (!mProbMode) {
71
        mSourceMap.setup(mSeedMap);
72
        mSourceMap.initialize(0.);
73
    }
764 werner 74
    mExternalSeedMap.clear();
391 werner 75
    mIndexFactor = int(seedmap_size) / cPxSize; // ratio seed grid / lip-grid:
550 werner 76
    if (logLevelInfo()) qDebug() << "Seed map setup. Species:"<< mSpecies->id() << "kernel-size: " << mSeedMap.sizeX() << "x" << mSeedMap.sizeY() << "pixels.";
373 werner 77
 
445 werner 78
    if (mSpecies==0)
79
        throw IException("Setup of SeedDispersal: Species not defined.");
80
 
802 werner 81
    if (fmod(GlobalSettings::instance()->settings().valueDouble("model.world.buffer",0),seedmap_size) != 0.)
82
        throw IException("SeedDispersal:setup(): The buffer (model.world.buffer) must be a integer multiple of the seed pixel size (currently 20m, e.g. 20,40,60,...)).");
83
 
415 werner 84
    // settings
445 werner 85
    mTM_occupancy = 1.; // is currently constant
1176 werner 86
    // copy values for the species parameters:
87
    mSpecies->treeMigKernel(mTM_as1, mTM_as2, mTM_ks);
445 werner 88
    mTM_fecundity_cell = mSpecies->fecundity_m2() * seedmap_size*seedmap_size * mTM_occupancy; // scale to production for the whole cell
89
    mNonSeedYearFraction = mSpecies->nonSeedYearFraction();
1176 werner 90
    XmlHelper xml(GlobalSettings::instance()->settings().node("model.settings.seedDispersal"));
91
    mKernelThresholdArea = xml.valueDouble(".longDistanceDispersal.thresholdArea", 0.0001);
92
    mKernelThresholdLDD = xml.valueDouble(".longDistanceDispersal.thresholdLDD", 0.0001);
1180 werner 93
    mLDDSeedlings = xml.valueDouble(".longDistanceDispersal.LDDSeedlings", 0.0001);
1176 werner 94
    mLDDRings = xml.valueInt(".longDistanceDispersal.rings", 4);
415 werner 95
 
1180 werner 96
    mLDDSeedlings = qMax(mLDDSeedlings, static_cast<float>(mKernelThresholdArea));
415 werner 97
 
1180 werner 98
    // long distance dispersal
99
    double ldd_area = setupLDD();
1176 werner 100
 
1180 werner 101
    createKernel(mKernelSeedYear, mTM_fecundity_cell, 1. - ldd_area);
1176 werner 102
 
415 werner 103
    // the kernel for non seed years looks similar, but is simply linearly scaled down
104
    // using the species parameter NonSeedYearFraction.
105
    // the central pixel still gets the value of 1 (i.e. 100% probability)
1180 werner 106
    createKernel(mKernelNonSeedYear, mTM_fecundity_cell*mNonSeedYearFraction, 1. - ldd_area);
415 werner 107
 
1167 werner 108
    if (mSpecies->fecunditySerotiny()>0.) {
109
        // an extra seed map is used for storing information related to post-fire seed rain
1168 werner 110
        mSeedMapSerotiny.clear();
111
        mSeedMapSerotiny.setup(GlobalSettings::instance()->model()->heightGrid()->metricRect(), seedmap_size );
112
        mSeedMapSerotiny.initialize(0.);
1167 werner 113
 
114
        // set up the special seed kernel for post fire seed rain
1180 werner 115
        createKernel(mKernelSerotiny, mTM_fecundity_cell * mSpecies->fecunditySerotiny(),1.);
1167 werner 116
        qDebug() << "created extra seed map and serotiny seed kernel for species" << mSpecies->name() << "with fecundity factor" << mSpecies->fecunditySerotiny();
117
    }
118
    mHasPendingSerotiny = false;
119
 
472 werner 120
    // debug info
121
    mDumpSeedMaps = GlobalSettings::instance()->settings().valueBool("model.settings.seedDispersal.dumpSeedMapsEnabled",false);
122
    if (mDumpSeedMaps) {
1102 werner 123
        QString path = GlobalSettings::instance()->path( GlobalSettings::instance()->settings().value("model.settings.seedDispersal.dumpSeedMapsPath") );
472 werner 124
        Helper::saveToTextFile(QString("%1/seedkernelYes_%2.csv").arg(path).arg(mSpecies->id()),gridToString(mKernelSeedYear));
125
        Helper::saveToTextFile(QString("%1/seedkernelNo_%2.csv").arg(path).arg(mSpecies->id()),gridToString(mKernelNonSeedYear));
1168 werner 126
        if (!mKernelSerotiny.isEmpty())
127
            Helper::saveToTextFile(QString("%1/seedkernelSerotiny_%2.csv").arg(path).arg(mSpecies->id()),gridToString(mKernelSerotiny));
417 werner 128
    }
1176 werner 129
 
1180 werner 130
 
472 werner 131
    // external seeds
481 werner 132
    mHasExternalSeedInput = false;
491 werner 133
    mExternalSeedBuffer = 0;
134
    mExternalSeedDirection = 0;
836 werner 135
    mExternalSeedBackgroundInput = 0.;
472 werner 136
    if (GlobalSettings::instance()->settings().valueBool("model.settings.seedDispersal.externalSeedEnabled",false)) {
764 werner 137
        if (GlobalSettings::instance()->settings().valueBool("model.settings.seedDispersal.seedBelt.enabled",false)) {
138
            // external seed input specified by sectors and around the project area (seedbelt)
139
            setupExternalSeedsForSpecies(mSpecies);
140
        } else {
141
            // external seeds specified fixedly per cardinal direction
142
            // current species in list??
143
            mHasExternalSeedInput = GlobalSettings::instance()->settings().value("model.settings.seedDispersal.externalSeedSpecies").contains(mSpecies->id());
144
            QString dir = GlobalSettings::instance()->settings().value("model.settings.seedDispersal.externalSeedSource").toLower();
145
            // encode cardinal positions as bits: e.g: "e,w" -> 6
146
            mExternalSeedDirection += dir.contains("n")?1:0;
147
            mExternalSeedDirection += dir.contains("e")?2:0;
148
            mExternalSeedDirection += dir.contains("s")?4:0;
149
            mExternalSeedDirection += dir.contains("w")?8:0;
837 werner 150
            QStringList buffer_list = GlobalSettings::instance()->settings().value("model.settings.seedDispersal.externalSeedBuffer").split(QRegExp("([^\\.\\w]+)"));
764 werner 151
            int index = buffer_list.indexOf(mSpecies->id());
152
            if (index>=0) {
153
                mExternalSeedBuffer = buffer_list[index+1].toInt();
154
                qDebug() << "enabled special buffer for species" <<mSpecies->id() << ": distance of" << mExternalSeedBuffer << "pixels = " << mExternalSeedBuffer*20. << "m";
155
            }
836 werner 156
 
157
            // background seed rain (i.e. for the full landscape), use regexp
837 werner 158
            QStringList background_input_list = GlobalSettings::instance()->settings().value("model.settings.seedDispersal.externalSeedBackgroundInput").split(QRegExp("([^\\.\\w]+)"));
836 werner 159
            index = background_input_list.indexOf(mSpecies->id());
160
            if (index>=0) {
161
                mExternalSeedBackgroundInput = background_input_list[index+1].toDouble();
162
                qDebug() << "enabled background seed input (for full area) for species" <<mSpecies->id() << ": p=" << mExternalSeedBackgroundInput;
163
            }
164
 
764 werner 165
            if (mHasExternalSeedInput)
166
                qDebug() << "External seed input enabled for" << mSpecies->id();
491 werner 167
        }
472 werner 168
    }
415 werner 169
 
373 werner 170
    // setup of seed kernel
391 werner 171
//    const int max_radius = 15; // pixels
172
//
173
//    mSeedKernel.clear();
174
//    mSeedKernel.setup(mSeedMap.cellsize(), 2*max_radius + 1 , 2*max_radius + 1);
175
//    mKernelOffset = max_radius;
176
//    // filling of the kernel.... for simplicity: a linear kernel
177
//    QPoint center = QPoint(mKernelOffset, mKernelOffset);
178
//    const double max_dist = max_radius * seedmap_size;
179
//    for (float *p=mSeedKernel.begin(); p!=mSeedKernel.end();++p) {
180
//        double d = mSeedKernel.distance(center, mSeedKernel.indexOf(p));
181
//        *p = qMax( 1. - d / max_dist, 0.);
182
//    }
373 werner 183
 
184
 
185
    // randomize seed map.... set 1/3 to "filled"
375 werner 186
    //for (int i=0;i<mSeedMap.count(); i++)
187
    //    mSeedMap.valueAtIndex(mSeedMap.randomPosition()) = 1.;
373 werner 188
 
189
 
375 werner 190
//    QImage img = gridToImage(mSeedMap, true, -1., 1.);
191
//    img.save("seedmap.png");
192
 
193
//    img = gridToImage(mSeedMap, true, -1., 1.);
764 werner 194
    //    img.save("seedmap_e.png");
373 werner 195
}
196
 
764 werner 197
void SeedDispersal::setupExternalSeeds()
198
{
199
    mExternalSeedBaseMap = 0;
200
    if (!GlobalSettings::instance()->settings().valueBool("model.settings.seedDispersal.seedBelt.enabled",false))
201
        return;
202
 
978 werner 203
    DebugTimer t("setup of external seed maps.");
764 werner 204
    XmlHelper xml(GlobalSettings::instance()->settings().node("model.settings.seedDispersal.seedBelt"));
1102 werner 205
    int seedbelt_width =xml.valueInt(".width",10);
764 werner 206
    // setup of sectors
207
    // setup of base map
208
    const float seedmap_size = 20.f;
209
    mExternalSeedBaseMap = new Grid<float>;
210
    mExternalSeedBaseMap->setup(GlobalSettings::instance()->model()->heightGrid()->metricRect(), seedmap_size );
211
    mExternalSeedBaseMap->initialize(0.);
212
    if (mExternalSeedBaseMap->count()*4 != GlobalSettings::instance()->model()->heightGrid()->count())
947 werner 213
        throw IException("error in setting up external seeds: the width and height of the project area need to be a multiple of 20m when external seeds are enabled.");
764 werner 214
    // make a copy of the 10m height grid in lower resolution and mark pixels that are forested and outside of
215
    // the project area.
216
    for (int y=0;y<mExternalSeedBaseMap->sizeY();y++)
217
        for (int x=0;x<mExternalSeedBaseMap->sizeX();x++) {
765 werner 218
            bool val = GlobalSettings::instance()->model()->heightGrid()->valueAtIndex(x*2,y*2).isForestOutside();
764 werner 219
            mExternalSeedBaseMap->valueAtIndex(x,y) = val?1.f:0.f;
220
            if(GlobalSettings::instance()->model()->heightGrid()->valueAtIndex(x*2,y*2).isValid())
221
                mExternalSeedBaseMap->valueAtIndex(x,y) = -1.f;
222
        }
836 werner 223
    QString path = GlobalSettings::instance()->path(GlobalSettings::instance()->settings().value("model.settings.seedDispersal.dumpSeedMapsPath"));
765 werner 224
 
225
    if (GlobalSettings::instance()->settings().valueBool("model.settings.seedDispersal.dumpSeedMapsEnabled",false)) {
989 werner 226
#ifdef ILAND_GUI
765 werner 227
        QImage img = gridToImage(*mExternalSeedBaseMap, true, -1., 2.);
228
        img.save(path + "/seedbeltmap_before.png");
989 werner 229
#endif
765 werner 230
    }
764 werner 231
    //    img.save("seedmap.png");
232
    // now scan the pixels of the belt: paint all pixels that are close to the project area
233
    // we do this 4 times (for all cardinal direcitons)
234
    for (int y=0;y<mExternalSeedBaseMap->sizeY();y++) {
235
        for (int x=0;x<mExternalSeedBaseMap->sizeX();x++) {
236
            if (mExternalSeedBaseMap->valueAtIndex(x, y)!=1.)
237
                continue;
765 werner 238
            int look_forward = std::min(x + seedbelt_width, mExternalSeedBaseMap->sizeX()-1);
1106 werner 239
            if (mExternalSeedBaseMap->valueAtIndex(look_forward, y)==-1.f) {
764 werner 240
                // fill pixels
241
                for(; x<look_forward;++x) {
242
                    float &v = mExternalSeedBaseMap->valueAtIndex(x, y);
243
                    if (v==1.f) v=2.f;
244
                }
245
            }
246
        }
247
    }
248
    // right to left
249
    for (int y=0;y<mExternalSeedBaseMap->sizeY();y++) {
250
        for (int x=mExternalSeedBaseMap->sizeX();x>=0;--x) {
251
            if (mExternalSeedBaseMap->valueAtIndex(x, y)!=1.)
252
                continue;
253
            int look_forward = std::max(x - seedbelt_width, 0);
1106 werner 254
            if (mExternalSeedBaseMap->valueAtIndex(look_forward, y)==-1.f) {
764 werner 255
                // fill pixels
256
                for(; x>look_forward;--x) {
257
                    float &v = mExternalSeedBaseMap->valueAtIndex(x, y);
258
                    if (v==1.f) v=2.f;
259
                }
260
            }
261
        }
262
    }
263
    // up and down ***
264
    // from top to bottom
265
    for (int x=0;x<mExternalSeedBaseMap->sizeX();x++) {
266
        for (int y=0;y<mExternalSeedBaseMap->sizeY();y++) {
267
 
268
            if (mExternalSeedBaseMap->valueAtIndex(x, y)!=1.)
269
                continue;
765 werner 270
            int look_forward = std::min(y + seedbelt_width, mExternalSeedBaseMap->sizeY()-1);
764 werner 271
            if (mExternalSeedBaseMap->valueAtIndex(x, look_forward)==-1.) {
272
                // fill pixels
273
                for(; y<look_forward;++y) {
274
                    float &v = mExternalSeedBaseMap->valueAtIndex(x, y);
275
                    if (v==1.f) v=2.f;
276
                }
277
            }
278
        }
279
    }
280
    // bottom to top ***
281
    for (int y=0;y<mExternalSeedBaseMap->sizeY();y++) {
282
        for (int x=mExternalSeedBaseMap->sizeX();x>=0;--x) {
283
            if (mExternalSeedBaseMap->valueAtIndex(x, y)!=1.)
284
                continue;
285
            int look_forward = std::max(y - seedbelt_width, 0);
286
            if (mExternalSeedBaseMap->valueAtIndex(x, look_forward)==-1.) {
287
                // fill pixels
288
                for(; y>look_forward;--y) {
289
                    float &v = mExternalSeedBaseMap->valueAtIndex(x, y);
290
                    if (v==1.f) v=2.f;
291
                }
292
            }
293
        }
294
    }
1180 werner 295
 
765 werner 296
    if (GlobalSettings::instance()->settings().valueBool("model.settings.seedDispersal.dumpSeedMapsEnabled",false)) {
989 werner 297
#ifdef ILAND_GUI
765 werner 298
        QImage img = gridToImage(*mExternalSeedBaseMap, true, -1., 2.);
972 werner 299
        img.save(path + "/seedbeltmap_after.png");
989 werner 300
#endif
765 werner 301
    }
764 werner 302
    mExtSeedData.clear();
1102 werner 303
    int sectors_x = xml.valueInt("sizeX",0);
304
    int sectors_y = xml.valueInt("sizeY",0);
764 werner 305
    if(sectors_x<1 || sectors_y<1)
306
        throw IException(QString("setup of external seed dispersal: invalid number of sectors x=%1 y=%3").arg(sectors_x).arg(sectors_y));
307
    QDomElement elem = xml.node(".");
308
    for(QDomNode n = elem.firstChild(); !n.isNull(); n = n.nextSibling()) {
309
        if (n.nodeName().startsWith("species")) {
310
            QStringList coords = n.nodeName().split("_");
311
            if (coords.count()!=3)
312
                throw IException("external seed species definition is not valid: " + n.nodeName());
313
            int x = coords[1].toInt();
314
            int y = coords[2].toInt();
315
            if (x<0 || x>=sectors_x || y<0 || y>=sectors_y)
316
                throw IException(QString("invalid sector for specifiing external seed input (x y): %1 %2 ").arg(x).arg(y) );
317
            int index = y*sectors_x + x;
318
 
319
            QString text = xml.value("." + n.nodeName());
320
            qDebug() << "processing element " << n.nodeName() << "x,y:" << x << y << text;
321
            // we assume pairs of name and fraction
322
            QStringList species_list = text.split(" ");
323
            for (int i=0;i<species_list.count();++i) {
324
                QVector<double> &space = mExtSeedData[species_list[i]];
325
                if (space.isEmpty())
326
                    space.resize(sectors_x*sectors_y); // are initialized to 0s
327
                double fraction = species_list[++i].toDouble();
328
                space[index] = fraction;
329
            }
330
        }
331
    }
332
    mExtSeedSizeX = sectors_x;
333
    mExtSeedSizeY = sectors_y;
334
    qDebug() << "setting up of external seed maps finished";
335
}
336
 
337
void SeedDispersal::finalizeExternalSeeds()
338
{
339
    if (mExternalSeedBaseMap)
340
        delete mExternalSeedBaseMap;
341
    mExternalSeedBaseMap = 0;
342
}
343
 
1167 werner 344
void SeedDispersal::seedProductionSerotiny(const QPoint &position_index)
345
{
1168 werner 346
    if (mSeedMapSerotiny.isEmpty())
1167 werner 347
        throw IException("Invalid use seedProductionSerotiny(): tried to set a seed source for a non-serotinous species!");
1168 werner 348
    mSeedMapSerotiny.valueAtIndex(position_index.x()/mIndexFactor, position_index.y()/mIndexFactor)=1.f;
1167 werner 349
    mHasPendingSerotiny = true;
350
}
351
 
391 werner 352
// ************ Kernel **************
1180 werner 353
void SeedDispersal::createKernel(Grid<float> &kernel, const double max_seed, const double scale_area)
391 werner 354
{
415 werner 355
 
1180 werner 356
    double max_dist = treemig_distanceTo(mKernelThresholdArea / species()->fecundity_m2());
391 werner 357
    double cell_size = mSeedMap.cellsize();
415 werner 358
    int max_radius = int(max_dist / cell_size);
391 werner 359
    // e.g.: cell_size: regeneration grid (e.g. 400qm), px-size: light-grid (4qm)
445 werner 360
    double occupation = cell_size*cell_size / (cPxSize*cPxSize * mTM_occupancy);
391 werner 361
 
415 werner 362
    kernel.clear();
391 werner 363
 
415 werner 364
    kernel.setup(mSeedMap.cellsize(), 2*max_radius + 1 , 2*max_radius + 1);
365
    int kernel_offset = max_radius;
366
 
1180 werner 367
    // filling of the kernel.... use the treemig density function
1179 werner 368
    double dist_center_cell = sqrt(cell_size*cell_size/M_PI);
415 werner 369
    QPoint center = QPoint(kernel_offset, kernel_offset);
370
    const float *sk_end = kernel.end();
371
    for (float *p=kernel.begin(); p!=sk_end;++p) {
372
        double d = kernel.distance(center, kernel.indexOf(p));
1178 werner 373
        if (d==0.)
1179 werner 374
            *p = treemig_centercell(dist_center_cell); // r is the radius of a circle with the same area as a cell
1178 werner 375
        else
1180 werner 376
            *p = d<=max_dist?static_cast<float>(( treemig(d+dist_center_cell) + treemig(d-dist_center_cell))/2.f * cell_size*cell_size ):0.f;
391 werner 377
    }
378
 
379
    // normalize
1102 werner 380
    float sum = kernel.sum();
391 werner 381
    if (sum==0. || occupation==0.)
382
        throw IException("create seed kernel: sum of probabilities = 0!");
383
 
1180 werner 384
    // the sum of all kernel cells has to equal 1 (- long distance dispersal)
385
     kernel.multiply(scale_area/sum);
1178 werner 386
 
1180 werner 387
 
388
    if (mProbMode) {
389
        // probabilities are derived in multiplying by seed number, and dividing by occupancy criterion
390
        float fecundity_factor = static_cast<float>( max_seed / occupation);
391
        kernel.multiply( fecundity_factor );
392
        // all cells that get more seeds than the occupancy criterion are considered to have no seed limitation for regeneration
393
        for (float *p=kernel.begin(); p!=sk_end;++p) {
394
            *p = qMin(*p, 1.f);
395
        }
391 werner 396
    }
397
    // set the parent cell to 1
1178 werner 398
    //kernel.valueAtIndex(kernel_offset, kernel_offset)=1.f;
415 werner 399
 
400
 
391 werner 401
    // some final statistics....
1180 werner 402
    if (logLevelInfo())
403
        qDebug() << "kernel setup. Species:"<< mSpecies->id() << "kernel-size: " << kernel.sizeX() << "x" << kernel.sizeY() << "pixels, sum (after scaling): " << kernel.sum();
1176 werner 404
 
1180 werner 405
 
391 werner 406
}
407
 
1180 werner 408
double SeedDispersal::setupLDD()
1176 werner 409
{
410
    mLDDDensity.clear(); mLDDDistance.clear();
411
    if (mKernelThresholdLDD >= mKernelThresholdArea) {
412
        // no long distance dispersal
1180 werner 413
        return 0.;
1176 werner 414
 
415
    }
1180 werner 416
    double r_min = treemig_distanceTo(mKernelThresholdArea / species()->fecundity_m2());
417
    double r_max = treemig_distanceTo(mKernelThresholdLDD / species()->fecundity_m2());
1176 werner 418
 
419
 
420
    mLDDDistance.push_back(r_min);
1180 werner 421
    double ldd_sum = 0.;
1176 werner 422
    for (int i=0;i<mLDDRings;++i) {
423
        double r_in = mLDDDistance.last();
424
        mLDDDistance.push_back(mLDDDistance.last() + (r_max-r_min)/static_cast<float>(mLDDRings));
425
        double r_out = mLDDDistance.last();
426
        // calculate the value of the kernel for the middle of the ring
427
        double ring_in = treemig(r_in); // kernel value at the inner border of the ring
428
        double ring_out = treemig(r_out); // kernel value at the outer border of the ring
1180 werner 429
        double ring_val = ring_in*0.4 + ring_out*0.6; // this is the average p -- 0.4/0.6 better estimate the nonlinear behavior (fits very well for medium to large kernels, e.g. piab)
430
        //
1176 werner 431
        // calculate the area of the ring
432
        double ring_area = (r_out*r_out - r_in*r_in)*M_PI; // in square meters
1180 werner 433
        // the number of px considers the fecundity
434
        double n_px = ring_val * ring_area * species()->fecundity_m2() / mLDDSeedlings;
435
        ldd_sum += ring_val * ring_area; // this fraction of the full kernel (=1) is distributed in theis ring
1176 werner 436
 
437
        mLDDDensity.push_back(n_px);
438
    }
1204 werner 439
    if (logLevelInfo())
440
        qDebug() << "Setup LDD for" << species()->name() << ", using probability: "<< mLDDSeedlings<< ": Distances:" << mLDDDistance << ", seed pixels:" << mLDDDensity << "covered prob:" << ldd_sum;
1176 werner 441
 
1180 werner 442
    return ldd_sum;
1176 werner 443
}
444
 
391 werner 445
/* R-Code:
930 werner 446
treemig=function(as1,as2,ks,d) # two-part exponential function, cf. Lischke & Loeffler (2006), Annex
391 werner 447
        {
448
        p1=(1-ks)*exp(-d/as1)/as1
449
        if(as2>0){p2=ks*exp(-d/as2)/as2}else{p2=0}
450
        p1+p2
451
        }
452
*/
670 werner 453
 
454
/// the used kernel function
455
/// see also Appendix B of iland paper II (note the different variable names)
1178 werner 456
/// the function returns the seed density at a point with distance 'distance'.
391 werner 457
double SeedDispersal::treemig(const double &distance)
458
{
459
    double p1 = (1.-mTM_ks)*exp(-distance/mTM_as1)/mTM_as1;
460
    double p2 = 0.;
461
    if (mTM_as2>0.)
462
       p2 = mTM_ks*exp(-distance/mTM_as2)/mTM_as2;
1178 werner 463
    double s = p1 + p2;
464
    // 's' is the density for radius 'distance' - not for specific point with that distance.
465
    // (i.e. the integral over the one-dimensional treemig function is 1, but if applied for 2d cells, the
466
    // sum would be much larger as all seeds arriving at 'distance' would be arriving somewhere at the circle with radius 'distance')
467
    // convert that to a density at a point, by dividing with the circumference at the circle with radius 'distance'
468
    s = s / (2.*std::max(distance, 0.01)*M_PI);
469
 
470
    return s;
391 werner 471
}
472
 
1178 werner 473
double SeedDispersal::treemig_centercell(const double &max_distance)
474
{
475
    // use 100 steps and calculate dispersal kernel for consecutive rings
476
    double sum = 0.;
477
    for (int i=0;i<100;i++) {
478
        double r_in = i*max_distance/100.;
479
        double r_out = (i+1)*max_distance/100.;
480
        double ring_area = (r_out*r_out-r_in*r_in)*M_PI;
481
        // the value of each ring is: treemig(r) * area of the ring
482
        sum += treemig((r_out+r_in)/2.)*ring_area;
483
    }
484
    return sum;
485
}
486
 
391 werner 487
/// calculate the distance where the probability falls below 'value'
488
double SeedDispersal::treemig_distanceTo(const double value)
489
{
490
    double dist = 0.;
491
    while (treemig(dist)>value && dist<10000.)
492
        dist+=10;
493
    return dist;
494
}
495
 
764 werner 496
void SeedDispersal::setupExternalSeedsForSpecies(Species *species)
497
{
498
    if (!mExtSeedData.contains(species->id()))
499
        return; // nothing to do
500
    qDebug() << "setting up external seed map for" << species->id();
501
    QVector<double> &pcts = mExtSeedData[species->id()];
502
    mExternalSeedMap.setup(mSeedMap);
503
    mExternalSeedMap.initialize(0.f);
504
    for (int sector_x=0; sector_x<mExtSeedSizeX; ++sector_x)
505
        for (int sector_y=0; sector_y<mExtSeedSizeY; ++sector_y) {
506
            int xmin,xmax,ymin,ymax;
507
            int fx = mExternalSeedMap.sizeX() / mExtSeedSizeX; // number of cells per sector
508
            xmin = sector_x*fx;
509
            xmax = (sector_x+1)*fx;
510
            fx = mExternalSeedMap.sizeY() / mExtSeedSizeY; // number of cells per sector
511
            ymin = sector_y*fx;
512
            ymax = (sector_y+1)*fx;
513
            // now loop over the whole sector
514
            int index = sector_y*mExtSeedSizeX  + sector_x;
515
            double p = pcts[index];
516
            for (int y=ymin;y<ymax;++y)
517
                for (int x=xmin;x<xmax;++x) {
518
                    // check
519
                    if (mExternalSeedBaseMap->valueAtIndex(x,y)==2.f)
520
                        if (drandom()<p)
521
                            mExternalSeedMap.valueAtIndex(x,y) = 1.f; // flag
522
                }
391 werner 523
 
764 werner 524
        }
1180 werner 525
    if (!mProbMode) {
526
       // scale external seed values to have pixels with LAI=3
527
        for (float *p=mExternalSeedMap.begin(); p!=mExternalSeedMap.end(); ++p)
528
           *p *= 3.f * mExternalSeedMap.cellsize()*mExternalSeedMap.cellsize();
529
    }
764 werner 530
}
531
 
532
 
391 werner 533
// ************ Dispersal **************
534
 
535
 
375 werner 536
/// debug function: loads a image of arbirtrary size...
537
void SeedDispersal::loadFromImage(const QString &fileName)
538
{
539
    mSeedMap.clear();
540
    loadGridFromImage(fileName, mSeedMap);
541
    for (float* p=mSeedMap.begin();p!=mSeedMap.end();++p)
542
        *p = *p>0.8?1.f:0.f;
543
 
544
}
545
 
546
void SeedDispersal::clear()
547
{
1180 werner 548
    Grid<float> *seed_map = &mSeedMap;
549
    if (!mProbMode) {
550
        seed_map = &mSourceMap;
551
        mSeedMap.initialize(0.f);
552
    }
764 werner 553
    if (!mExternalSeedMap.isEmpty()) {
554
        // we have a preprocessed initial value for the external seed map (see setupExternalSeeds() et al)
1180 werner 555
        seed_map->copy(mExternalSeedMap);
764 werner 556
        return;
557
    }
558
    // clear the map
1102 werner 559
    float background_value = static_cast<float>(mExternalSeedBackgroundInput); // there is potentitally a background probability <>0 for all pixels.
1180 werner 560
    seed_map->initialize(background_value);
472 werner 561
    if (mHasExternalSeedInput) {
562
        // if external seed input is enabled, the buffer area of the seed maps is
563
        // "turned on", i.e. set to 1.
1180 werner 564
        int buf_size = GlobalSettings::instance()->settings().valueInt("model.world.buffer",0.) / static_cast<int>(seed_map->cellsize());
491 werner 565
        // if a special buffer is defined, reduce the size of the input
566
        if (mExternalSeedBuffer>0)
567
            buf_size -= mExternalSeedBuffer;
472 werner 568
        if (buf_size>0) {
569
            int ix,iy;
1180 werner 570
            for (iy=0;iy<seed_map->sizeY();++iy)
571
                for (ix=0;ix<seed_map->sizeX(); ++ix)
572
                    if (iy<buf_size || iy>=seed_map->sizeY()-buf_size || ix<buf_size || ix>=seed_map->sizeX()-buf_size) {
491 werner 573
                        if (mExternalSeedDirection==0) {
574
                            // seeds from all directions
1180 werner 575
                            seed_map->valueAtIndex(ix,iy)=1.f;
491 werner 576
                        } else {
577
                            // seeds only from specific directions
578
                            float value = 0.f;
1180 werner 579
                            if (isBitSet(mExternalSeedDirection,1) && ix>=seed_map->sizeX()-buf_size) value = 1; // north
491 werner 580
                            if (isBitSet(mExternalSeedDirection,2) && iy<buf_size) value = 1; // east
581
                            if (isBitSet(mExternalSeedDirection,3) && ix<buf_size) value = 1; // south
1180 werner 582
                            if (isBitSet(mExternalSeedDirection,4) && iy>=seed_map->sizeY()-buf_size) value = 1; // west
583
                            seed_map->valueAtIndex(ix,iy)=value;
491 werner 584
                        }
585
                    }
472 werner 586
        } else {
587
            qDebug() << "external seed input: Error: invalid buffer size???";
588
        }
589
    }
375 werner 590
}
591
 
1176 werner 592
static int _debug_ldd=0;
375 werner 593
void SeedDispersal::execute()
594
{
991 werner 595
#ifdef ILAND_GUI
596
    int year = GlobalSettings::instance()->currentYear();
597
    QString path;
472 werner 598
    if (mDumpSeedMaps) {
1102 werner 599
        path = GlobalSettings::instance()->path( GlobalSettings::instance()->settings().value("model.settings.seedDispersal.dumpSeedMapsPath") );
472 werner 600
        gridToImage(seedMap(), true, 0., 1.).save(QString("%1/seed_before_%2_%3.png").arg(path).arg(mSpecies->id()).arg(year));
618 werner 601
        qDebug() << "saved seed map image to" << path;
992 werner 602
    }
989 werner 603
#else
992 werner 604
    if (mDumpSeedMaps)
989 werner 605
        qDebug() << "saving of seedmaps only supported in the iLand GUI.";
606
#endif
1180 werner 607
    if (mProbMode) {
992 werner 608
 
1180 werner 609
        DebugTimer t("seed dispersal", true);
1106 werner 610
 
1180 werner 611
        // (1) detect edges
612
        if (edgeDetection()) {
613
 
1106 werner 614
#ifdef ILAND_GUI
1180 werner 615
            if (mDumpSeedMaps) {
616
                gridToImage(seedMap(), true, -1., 1.).save(QString("%1/seed_edge_%2_%3.png").arg(path).arg(mSpecies->id()).arg(year));
617
            }
1106 werner 618
#endif
619
 
1180 werner 620
            // (2) distribute seed probabilites from edges
621
            distribute();
622
        }
1167 werner 623
 
1180 werner 624
        // special case serotiny
625
        if (mHasPendingSerotiny) {
626
            qDebug() << "calculating extra seed rain (serotiny)....";
1168 werner 627
#ifdef ILAND_GUI
1180 werner 628
            if (mDumpSeedMaps) {
629
                gridToImage(mSeedMapSerotiny, true, 0., 1.).save(QString("%1/seed_serotiny_before_%2_%3.png").arg(path).arg(mSpecies->id()).arg(year));
630
            }
1168 werner 631
#endif
1180 werner 632
            if (edgeDetection(&mSeedMapSerotiny))
633
                distribute(&mSeedMapSerotiny);
634
            // copy back data
635
            float *sero=mSeedMapSerotiny.begin();
636
            for (float* p=mSeedMap.begin();p!=mSeedMap.end();++p, ++sero)
637
                *p = std::max(*p, *sero);
1167 werner 638
 
1180 werner 639
            float total = mSeedMapSerotiny.sum();
1168 werner 640
#ifdef ILAND_GUI
1180 werner 641
            if (mDumpSeedMaps) {
642
                gridToImage(mSeedMapSerotiny, true, 0., 1.).save(QString("%1/seed_serotiny_after_%2_%3.png").arg(path).arg(mSpecies->id()).arg(year));
643
            }
644
#endif
645
            mSeedMapSerotiny.initialize(0.f); // clear
646
            mHasPendingSerotiny = false;
647
            qDebug() << "serotiny event: extra seed input" << total << "(total sum of seed probability over all pixels of the serotiny seed map) of species" << mSpecies->name();
1168 werner 648
        }
1180 werner 649
 
650
    } else {
651
        // distribute actual values
652
        DebugTimer t("seed dispersal", true);
653
        // fill seed map from source map
654
        distributeSeeds();
655
 
619 werner 656
    }
989 werner 657
#ifdef ILAND_GUI
1102 werner 658
    if (mDumpSeedMaps) {
1180 werner 659
        //qDebug() << "finished seed dispersal for species. time: " << mSpecies->id() << t.elapsed();
472 werner 660
        gridToImage(seedMap(), true, 0., 1.).save(QString("%1/seed_after_%2_%3.png").arg(path).arg(mSpecies->id()).arg(year));
1102 werner 661
    }
1064 werner 662
 
663
    if (!mDumpNextYearFileName.isEmpty()) {
664
        Helper::saveToTextFile(GlobalSettings::instance()->path(mDumpNextYearFileName), gridToESRIRaster(seedMap()));
665
        qDebug() << "saved seed map for " << species()->id() << "to" << GlobalSettings::instance()->path(mDumpNextYearFileName);
666
        mDumpNextYearFileName = QString();
667
    }
1176 werner 668
    qDebug() << "LDD-count:" << _debug_ldd;
1064 werner 669
 
989 werner 670
#endif
375 werner 671
}
672
 
373 werner 673
/** scans the seed image and detects "edges".
674
    edges are then subsequently marked (set to -1). This is pass 1 of the seed distribution process.
675
*/
1167 werner 676
bool SeedDispersal::edgeDetection(Grid<float> *seed_map)
373 werner 677
{
678
    float *p_above, *p, *p_below;
1167 werner 679
    Grid<float> &seedmap = seed_map ? *seed_map : mSeedMap; // switch to extra seed map if provided
680
    int dy = seedmap.sizeY();
681
    int dx = seedmap.sizeX();
373 werner 682
    int x,y;
619 werner 683
    bool found = false;
1106 werner 684
 
685
    // fill mini-gaps
1168 werner 686
    int n_gaps_filled=0;
373 werner 687
    for (y=1;y<dy-1;++y){
1167 werner 688
        p = seedmap.ptr(1,y);
373 werner 689
        p_above = p - dx; // one line above
690
        p_below = p + dx; // one line below
691
        for (x=1;x<dx-1;++x,++p,++p_below, ++p_above) {
1106 werner 692
            if (*p < 0.999f) {
693
 
694
                if ((*(p_above-1)==1.f) + (*p_above==1.f) + (*(p_above+1)==1.f) +
695
                    (*(p-1)==1.f) + (*(p+1)==1.f) +
1168 werner 696
                    (*(p_below-1)==1.f) + (*p_below==1.f) + (*(p_below+1)==1.f) > 3) {
1106 werner 697
                    *p=0.999f; // if more than 3 neighbors are active pixels, the value is high
1168 werner 698
                    ++n_gaps_filled;
699
                }
1106 werner 700
            }
701
 
702
        }
703
    }
704
 
705
 
706
    // now detect the edges
707
    int n_edges=0 ;
708
    for (y=1;y<dy-1;++y){
1168 werner 709
        p = seedmap.ptr(1,y);
1106 werner 710
        p_above = p - dx; // one line above
711
        p_below = p + dx; // one line below
712
        for (x=1;x<dx-1;++x,++p,++p_below, ++p_above) {
713
            if (*p == 1.f) {
619 werner 714
                found = true;
1106 werner 715
                if ( (*(p_above-1)<0.999f && *(p_above-1)>=0.f)
716
                     || (*p_above<0.999f && *p_above>=0.f)
717
                     || (*(p_above+1)<0.999f && *(p_above+1)>=0.f)
718
                     || (*(p-1)<0.999f && *(p-1)>=0.f)
719
                     || (*(p+1)<0.999f && (*p+1)>=0.f)
720
                     || (*(p_below-1)<0.999f && *(p_below-1)>=0.f)
721
                     || (*p_below<0.999f && *p_below>=0.f)
722
                     || (*(p_below+1)<0.999f && *(p_below+1)>=0.f ) ) {
723
                    *p=-1.f; // if any surrounding pixel is >=0 & <0.999: -> mark as edge
724
                    ++n_edges;
725
                }
373 werner 726
            }
727
 
728
        }
729
    }
1168 werner 730
    if (mDumpSeedMaps)
731
        qDebug() << "species:" << mSpecies->id() << "# of gaps filled: " << n_gaps_filled << "# of edge-pixels:" << n_edges;
619 werner 732
    return found;
373 werner 733
}
734
 
735
/** do the seed probability distribution.
736
    This is phase 2. Apply the seed kernel for each "edge" point identified in phase 1.
737
*/
1167 werner 738
void SeedDispersal::distribute(Grid<float> *seed_map)
373 werner 739
{
740
    int x,y;
1167 werner 741
    Grid<float> &seedmap = seed_map ? *seed_map : mSeedMap; // switch to extra seed map if provided
742
    float *end = seedmap.end();
743
    float *p = seedmap.begin();
415 werner 744
    // choose the kernel depending whether there is a seed year for the current species or not
1168 werner 745
    Grid<float> *kernel = species()->isSeedYear()? &mKernelSeedYear : &mKernelNonSeedYear;
1167 werner 746
    // extra case: serotiny
747
    if (seed_map)
1168 werner 748
        kernel = &mKernelSerotiny;
1167 werner 749
 
1168 werner 750
    int offset = kernel->sizeX() / 2; // offset is the index of the center pixel
373 werner 751
    for(;p!=end;++p) {
375 werner 752
        if (*p==-1.f) {
373 werner 753
            // edge pixel found. Now apply the kernel....
1167 werner 754
            QPoint pt=seedmap.indexOf(p);
1168 werner 755
            for (y=-offset;y<=offset;++y) {
756
                for (x=-offset;x<=offset;++x) {
757
                    float &kernel_value = kernel->valueAtIndex(x+offset, y+offset);
758
                    if (kernel_value>0.f && seedmap.isIndexValid(pt.x()+x, pt.y()+y)) {
1167 werner 759
                        float &val = seedmap.valueAtIndex(pt.x()+x, pt.y()+y);
1106 werner 760
                        if (val!=-1.f)
1168 werner 761
                            val = qMin(1.f - (1.f - val)*(1.f-kernel_value),1.f );
373 werner 762
                    }
1168 werner 763
                }
764
            }
1176 werner 765
            // long distance dispersal
766
            if (!mLDDDensity.isEmpty()) {
767
                double m = species()->isSeedYear() ? 1. : mNonSeedYearFraction;
768
                for (int r=0;r<mLDDDensity.size(); ++r) {
1180 werner 769
                    float ldd_val = mLDDSeedlings; // pixels will have this probability
1176 werner 770
                    int n = round( mLDDDensity[r]*m ); // number of pixels to activate
771
                    for (int i=0;i<n;++i) {
772
                        // distance and direction:
773
                        double radius = nrandom(mLDDDistance[r], mLDDDistance[r+1]) / seedmap.cellsize(); // choose a random distance (in pixels)
774
                        double phi = drandom()*2.*M_PI; // choose a random direction
775
                        QPoint ldd(pt.x() + radius*cos(phi), pt.y() + radius*sin(phi));
776
                        if (seedmap.isIndexValid(ldd)) {
777
                            float &val = seedmap.valueAtIndex(ldd);
778
                            _debug_ldd++;
779
                            // use the same adding of probabilities
780
                            if (val!=-1.f)
781
                                val = qMin(1.f - (1.f - val)*(1.f-ldd_val), 1.f);
782
                        }
783
                    }
784
                }
785
            }
375 werner 786
            *p=1.f; // mark as processed
373 werner 787
        } // *p==1
788
    } // for()
789
}
1180 werner 790
 
1182 werner 791
// because C modulo operation gives negative numbers for negative values, here a fix
792
// that always returns positive numbers: http://www.lemoda.net/c/modulo-operator/
793
#define MOD(a,b) ((((a)%(b))+(b))%(b))
794
 
1180 werner 795
void SeedDispersal::distributeSeeds(Grid<float> *seed_map)
796
{
797
    Grid<float> &sourcemap = seed_map ? *seed_map : mSourceMap; // switch to extra seed map if provided
798
    Grid<float> &kernel = mKernelSeedYear;
1182 werner 799
 
800
    // *** estimate seed production (based on leaf area) ***
1180 werner 801
    // calculate number of seeds; the source map holds now m2 leaf area on 20x20m pixels
802
    // after this step, each source cell has a value between 0 (no source) and 1 (fully covered cell)
803
    float fec = species()->fecundity_m2();
804
    if (!species()->isSeedYear())
805
        fec *= mNonSeedYearFraction;
806
    for (float *p=sourcemap.begin(); p!=sourcemap.end(); ++p){
807
        if (*p) {
808
            // if LAI  >3, then full potential is assumed, below LAI=3 a linear ramp is used
809
            *p = std::min(*p / (sourcemap.cellsize()*sourcemap.cellsize()) /3.f, 3.f);
810
        }
811
    }
812
 
813
    // sink mode
814
 
1182 werner 815
    //    // now look for each pixel in the targetmap and sum up seeds*kernel
816
    //    int idx=0;
817
    //    int offset = kernel.sizeX() / 2; // offset is the index of the center pixel
818
    //    //const Grid<ResourceUnit*> &ru_map = GlobalSettings::instance()->model()->RUgrid();
819
    //    DebugTimer tsink("seed_sink"); {
820
    //    for (float *t=mSeedMap.begin(); t!=mSeedMap.end(); ++t, ++idx) {
821
    //        // skip out-of-project areas
822
    //        //if (!ru_map.constValueAtIndex(mSeedMap.index5(idx)))
823
    //        //    continue;
824
    //        // apply the kernel
825
    //        QPoint sm=mSeedMap.indexOf(t)-QPoint(offset, offset);
826
    //        for (int iy=0;iy<kernel.sizeY();++iy) {
827
    //            for (int ix=0;ix<kernel.sizeX();++ix) {
828
    //                if (sourcemap.isIndexValid(sm.x()+ix, sm.y()+iy))
829
    //                    *t+=sourcemap(sm.x()+ix, sm.y()+iy) * kernel(ix, iy);
830
    //            }
831
    //        }
832
    //    }
833
    //    } // debugtimer
834
    //    mSeedMap.initialize(0.f); // just for debugging...
1180 werner 835
 
836
    int offset = kernel.sizeX() / 2; // offset is the index of the center pixel
837
    // source mode
838
 
1182 werner 839
    // *** seed distribution (Kernel + long distance dispersal) ***
840
    if (GlobalSettings::instance()->model()->settings().torusMode==false) {
841
        // ** standard case (no torus) **
842
        for (float *src=sourcemap.begin(); src!=sourcemap.end(); ++src) {
843
            if (*src>0.f) {
844
                QPoint sm=sourcemap.indexOf(src)-QPoint(offset, offset);
845
                int sx = sm.x(), sy=sm.y();
846
                for (int iy=0;iy<kernel.sizeY();++iy) {
847
                    for (int ix=0;ix<kernel.sizeX();++ix) {
848
                        if (mSeedMap.isIndexValid(sx+ix, sy+iy))
849
                            mSeedMap.valueAtIndex(sx+ix, sy+iy)+= *src * kernel(ix, iy);
850
                    }
851
                }
852
                // long distance dispersal
853
                if (!mLDDDensity.isEmpty()) {
854
                    QPoint pt=sourcemap.indexOf(src);
1180 werner 855
 
1182 werner 856
                    for (int r=0;r<mLDDDensity.size(); ++r) {
857
                        float ldd_val = mLDDSeedlings / fec; // pixels will have this probability [note: fecundity will be multiplied below]
858
                        int n;
859
                        if (mLDDDensity[r]<1)
860
                            n = drandom()<mLDDDensity[r] ? 1 : 0;
861
                        else
862
                            n = round( mLDDDensity[r] ); // number of pixels to activate
863
                        for (int i=0;i<n;++i) {
864
                            // distance and direction:
865
                            double radius = nrandom(mLDDDistance[r], mLDDDistance[r+1]) / mSeedMap.cellsize(); // choose a random distance (in pixels)
866
                            double phi = drandom()*2.*M_PI; // choose a random direction
867
                            QPoint ldd(pt.x() + radius*cos(phi), pt.y() + radius*sin(phi));
868
                            if (mSeedMap.isIndexValid(ldd)) {
869
                                float &val = mSeedMap.valueAtIndex(ldd);
870
                                _debug_ldd++;
871
                                val += ldd_val;
872
                            }
873
                        }
874
                    }
1180 werner 875
                }
1182 werner 876
 
1180 werner 877
            }
1182 werner 878
        }
879
    } else {
880
        // **** seed distribution in torus mode ***
881
        int seedmap_offset = sourcemap.indexAt(QPointF(0., 0.)).x(); // the seed maps have x extra rows/columns
882
        QPoint torus_pos;
883
        int seedpx_per_ru = static_cast<int>((cRUSize/sourcemap.cellsize()));
884
        for (float *src=sourcemap.begin(); src!=sourcemap.end(); ++src) {
885
            if (*src>0.f) {
886
                QPoint sm=sourcemap.indexOf(src);
887
                // get the origin of the resource unit *on* the seedmap in *seedmap-coords*:
888
                QPoint offset_ru( ((sm.x()-seedmap_offset) / seedpx_per_ru) * seedpx_per_ru + seedmap_offset,
889
                                 ((sm.y()-seedmap_offset) / seedpx_per_ru) * seedpx_per_ru + seedmap_offset);  // coords RU origin
1180 werner 890
 
1182 werner 891
                QPoint offset_in_ru((sm.x()-seedmap_offset) % seedpx_per_ru, (sm.y()-seedmap_offset) % seedpx_per_ru );  // offset of current point within the RU
892
 
893
                //QPoint sm=sourcemap.indexOf(src)-QPoint(offset, offset);
894
                for (int iy=0;iy<kernel.sizeY();++iy) {
895
                    for (int ix=0;ix<kernel.sizeX();++ix) {
896
                        torus_pos = offset_ru + QPoint(MOD((offset_in_ru.x() - offset + ix), seedpx_per_ru), MOD((offset_in_ru.y() - offset + iy), seedpx_per_ru));
897
 
898
                        if (mSeedMap.isIndexValid(torus_pos))
899
                            mSeedMap.valueAtIndex(torus_pos)+= *src * kernel(ix, iy);
900
                    }
901
                }
902
                // long distance dispersal
903
                if (!mLDDDensity.isEmpty()) {
904
 
905
                    for (int r=0;r<mLDDDensity.size(); ++r) {
906
                        float ldd_val = mLDDSeedlings / fec; // pixels will have this probability [note: fecundity will be multiplied below]
907
                        int n;
908
                        if (mLDDDensity[r]<1)
909
                            n = drandom()<mLDDDensity[r] ? 1 : 0;
910
                        else
911
                            n = round( mLDDDensity[r] ); // number of pixels to activate
912
                        for (int i=0;i<n;++i) {
913
                            // distance and direction:
914
                            double radius = nrandom(mLDDDistance[r], mLDDDistance[r+1]) / mSeedMap.cellsize(); // choose a random distance (in pixels)
915
                            double phi = drandom()*2.*M_PI; // choose a random direction
916
                            QPoint ldd( radius*cos(phi),  + radius*sin(phi)); // destination (offset)
917
                            torus_pos = offset_ru + QPoint(MOD((offset_in_ru.x()+ldd.x()),seedpx_per_ru), MOD((offset_in_ru.y()+ldd.y()),seedpx_per_ru) );
918
 
919
                            if (mSeedMap.isIndexValid(torus_pos)) {
920
                                float &val = mSeedMap.valueAtIndex(torus_pos);
921
                                _debug_ldd++;
922
                                val += ldd_val;
923
                            }
1180 werner 924
                        }
925
                    }
926
                }
1182 werner 927
 
1180 werner 928
            }
929
        }
1182 werner 930
    } // torus
1180 werner 931
 
932
 
933
 
934
    // now the seed sources (0..1) are spatially distributed by the kernel (and LDD) without altering the magnitude;
935
    // now we include the fecundity (=seedling potential per m2 crown area), and convert to the establishment probability p_seed.
936
    // The number of (potential) seedlings per m2 on each cell is: cell * fecundity[m2]
937
    // We assume that the availability of 10 potential seedlings/m2 is enough for unconstrained establishment;
1181 werner 938
    const float n_unlimited = 100.f;
1180 werner 939
    for (float *p=mSeedMap.begin(); p!=mSeedMap.end(); ++p){
940
        if (*p>0.f) {
941
            *p = std::min(*p*fec / n_unlimited, 1.f);
942
        }
943
    }
944
}