Rev 1221 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1033 | werner | 1 | /******************************************************************************************** |
2 | ** iLand - an individual based forest landscape and disturbance model |
||
3 | ** http://iland.boku.ac.at |
||
4 | ** Copyright (C) 2009- Werner Rammer, Rupert Seidl |
||
5 | ** |
||
6 | ** This program is free software: you can redistribute it and/or modify |
||
7 | ** it under the terms of the GNU General Public License as published by |
||
8 | ** the Free Software Foundation, either version 3 of the License, or |
||
9 | ** (at your option) any later version. |
||
10 | ** |
||
11 | ** This program is distributed in the hope that it will be useful, |
||
12 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
13 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
14 | ** GNU General Public License for more details. |
||
15 | ** |
||
16 | ** You should have received a copy of the GNU General Public License |
||
17 | ** along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
18 | ********************************************************************************************/ |
||
990 | werner | 19 | #include "abe_global.h" |
20 | #include "actthinning.h" |
||
21 | |||
22 | #include "fmstand.h" |
||
23 | #include "fmtreelist.h" |
||
24 | #include "fmstp.h" |
||
25 | #include "forestmanagementengine.h" |
||
26 | #include "fomescript.h" |
||
1061 | werner | 27 | #include "model.h" |
28 | #include "speciesset.h" |
||
29 | #include "species.h" |
||
990 | werner | 30 | |
31 | #include "tree.h" |
||
32 | |||
33 | #include <QJSValueIterator> |
||
34 | namespace ABE { |
||
1095 | werner | 35 | |
36 | /** @class ActThinning |
||
37 | @ingroup abe |
||
38 | The ActThinning class implements a very general interface to thinning activties. |
||
39 | |||
40 | */ |
||
41 | |||
990 | werner | 42 | // statics |
43 | QStringList ActThinning::mSyntaxCustom; |
||
44 | |||
45 | |||
46 | ActThinning::ActThinning(FMSTP *parent): Activity(parent) |
||
47 | { |
||
48 | mBaseActivity.setIsScheduled(true); // use the scheduler |
||
49 | mBaseActivity.setDoSimulate(true); // simulate per default |
||
50 | mThinningType = Invalid; |
||
991 | werner | 51 | if (mSyntaxCustom.isEmpty()) |
52 | mSyntaxCustom = QStringList() << Activity::mAllowedProperties |
||
53 | << "percentile" << "removal" << "thinning" |
||
54 | << "relative" << "remainingStems" << "minDbh" |
||
55 | << "filter" << "targetVariable" << "targetRelative" |
||
1062 | werner | 56 | << "targetValue" << "classes" << "onEvaluate"; |
990 | werner | 57 | } |
58 | |||
59 | QString ActThinning::type() const |
||
60 | { |
||
61 | QString th; |
||
62 | switch (mThinningType) { |
||
63 | case Invalid: th="Invalid"; break; |
||
64 | case FromBelow: th="from below"; break; |
||
65 | case FromAbove: th="from above"; break; |
||
66 | case Custom: th = "custom"; break; |
||
67 | case Selection: th = "selection"; break; |
||
68 | } |
||
69 | |||
70 | return QString("thinning (%1)").arg(th); |
||
71 | } |
||
72 | |||
73 | void ActThinning::setup(QJSValue value) |
||
74 | { |
||
75 | Activity::setup(value); // setup base events |
||
76 | mThinningType = Invalid; |
||
77 | QString th_type = FMSTP::valueFromJs(value, "thinning").toString(); |
||
78 | if (th_type=="fromBelow") mThinningType=FromBelow; |
||
79 | else if (th_type=="fromAbove") mThinningType=FromAbove; |
||
80 | else if (th_type=="custom") mThinningType=Custom; |
||
81 | else if (th_type=="selection") mThinningType=Selection; |
||
82 | else |
||
83 | throw IException(QString("Setup of thinning: invalid thinning type: %1").arg(th_type)); |
||
84 | |||
85 | switch (mThinningType) { |
||
86 | case Custom: setupCustom(value); break; |
||
87 | case Selection: setupSelective(value); break; |
||
88 | default: throw IException("No setup defined for thinning type"); |
||
89 | } |
||
90 | |||
91 | } |
||
92 | |||
93 | bool ActThinning::evaluate(FMStand *stand) |
||
94 | { |
||
95 | bool return_value = true; |
||
96 | switch (mThinningType) { |
||
97 | case Custom: |
||
98 | for (int i=0;i<mCustomThinnings.count();++i) |
||
99 | return_value = return_value && evaluateCustom(stand, mCustomThinnings[i]); |
||
100 | return return_value; // false if one fails |
||
101 | |||
102 | case Selection: |
||
103 | return evaluateSelective(stand); |
||
104 | default: throw IException("ActThinning::evaluate: not available for thinning type"); |
||
105 | } |
||
106 | return false; |
||
107 | } |
||
108 | |||
109 | bool ActThinning::execute(FMStand *stand) |
||
110 | { |
||
111 | if (stand->trace()) qCDebug(abe) << stand->context() << "execute activity" << name() << ":" << type(); |
||
112 | if (events().hasEvent(QStringLiteral("onExecute"))) { |
||
113 | // switch off simulation mode |
||
114 | stand->currentFlags().setDoSimulate(false); |
||
115 | // execute this event |
||
116 | bool result = Activity::execute(stand); |
||
117 | stand->currentFlags().setDoSimulate(true); |
||
118 | return result; |
||
119 | } else { |
||
120 | // default behavior: process all marked trees (harvest / cut) |
||
121 | if (stand->trace()) qCDebug(abe) << stand->context() << "activity" << name() << "remove all marked trees."; |
||
122 | FMTreeList trees(stand); |
||
123 | trees.removeMarkedTrees(); |
||
124 | return true; |
||
125 | } |
||
126 | |||
127 | } |
||
128 | |||
129 | void ActThinning::setupCustom(QJSValue value) |
||
130 | { |
||
1061 | werner | 131 | events().setup(value, QStringList() << "onEvaluate"); |
990 | werner | 132 | mCustomThinnings.clear(); |
133 | if (value.hasProperty("thinnings") && value.property("thinnings").isArray()) { |
||
134 | QJSValueIterator it(value.property("thinnings")); |
||
135 | while (it.hasNext()) { |
||
136 | it.next(); |
||
137 | if (it.name()==QStringLiteral("length")) |
||
138 | continue; |
||
139 | mCustomThinnings.push_back(SCustomThinning()); |
||
140 | setupSingleCustom(it.value(), mCustomThinnings.back()); |
||
141 | } |
||
142 | } else { |
||
143 | mCustomThinnings.push_back(SCustomThinning()); |
||
144 | setupSingleCustom(value, mCustomThinnings.back()); |
||
145 | } |
||
146 | } |
||
147 | |||
148 | void ActThinning::setupSelective(QJSValue value) |
||
149 | { |
||
150 | mSelectiveThinning.N = FMSTP::valueFromJs(value, "N", "400").toInt(); |
||
151 | } |
||
152 | |||
153 | // setup of the "custom" thinning operation |
||
154 | void ActThinning::setupSingleCustom(QJSValue value, SCustomThinning &custom) |
||
155 | { |
||
156 | FMSTP::checkObjectProperties(value, mSyntaxCustom, "setup of 'custom' thinning:" + name()); |
||
157 | |||
158 | custom.usePercentiles = FMSTP::boolValueFromJs(value, "percentile", true); |
||
159 | custom.removal = FMSTP::boolValueFromJs(value, "removal", true); |
||
160 | custom.relative = FMSTP::boolValueFromJs(value, "relative", true); |
||
161 | custom.remainingStems = FMSTP::valueFromJs(value, "remainingStems", "0").toInt(); |
||
162 | custom.minDbh = FMSTP::valueFromJs(value, "minDbh", "0").toNumber(); |
||
163 | QJSValue filter = FMSTP::valueFromJs(value, "filter", ""); |
||
164 | if (filter.isString()) |
||
165 | custom.filter = filter.toString(); |
||
166 | else |
||
167 | custom.filter = QString(); |
||
168 | custom.targetVariable = FMSTP::valueFromJs(value, "targetVariable", "stems").toString(); |
||
169 | if (custom.targetVariable != "stems" && |
||
170 | custom.targetVariable != "basalArea" && |
||
171 | custom.targetVariable != "volume") |
||
172 | throw IException(QString("setup of custom Activity: invalid targetVariable: %1").arg(custom.targetVariable)); |
||
173 | |||
174 | custom.targetRelative = FMSTP::boolValueFromJs(value, "targetRelative", true); |
||
175 | custom.targetValue = FMSTP::valueFromJs(value, "targetValue", "30").toNumber(); |
||
176 | if (custom.targetRelative && (custom.targetValue>100. || custom.targetValue<0.)) |
||
177 | throw IException(QString("setup of custom Activity: invalid relative targetValue (0-100): %1").arg(custom.targetValue)); |
||
178 | |||
179 | QJSValue values = FMSTP::valueFromJs(value, "classes", "", "setup custom acitvity"); |
||
180 | if (!values.isArray()) |
||
181 | throw IException("setup of custom activity: the 'classes' is not an array."); |
||
182 | custom.classValues.clear(); |
||
183 | custom.classPercentiles.clear(); |
||
184 | QJSValueIterator it(values); |
||
185 | while (it.hasNext()) { |
||
186 | it.next(); |
||
187 | if (it.name()==QStringLiteral("length")) |
||
188 | continue; |
||
189 | custom.classValues.push_back(it.value().toNumber()); |
||
190 | } |
||
191 | if (custom.classValues.size()==0) |
||
192 | throw IException("setup of custom thinnings: 'classes' has no elements."); |
||
193 | |||
194 | // check if sum is 100 for relative classes |
||
195 | if (custom.relative) { |
||
196 | double sum=0.; |
||
197 | for (int i=0;i<custom.classValues.size();++i) |
||
198 | sum+=custom.classValues[i]; |
||
199 | if (fabs(sum-100.)>0.000001) |
||
200 | throw IException("setup of custom thinnings: 'classes' do not add up to 100 (relative=true)."); |
||
201 | } |
||
202 | |||
203 | // span the range between 0..100: from e.g. 10,20,30,20,20 -> 0,10,30,60,80,100 |
||
204 | double f = 100. / custom.classValues.size(); |
||
205 | double p = 0.; |
||
206 | for (int i=0;i<custom.classValues.size();++i, p+=f) |
||
207 | custom.classPercentiles.push_back(qRound(p)); |
||
208 | custom.classPercentiles.push_back(100); |
||
209 | } |
||
210 | |||
211 | bool ActThinning::evaluateCustom(FMStand *stand, SCustomThinning &custom) |
||
212 | { |
||
1061 | werner | 213 | // fire onEvaluate event and collect probabilities |
214 | QJSValue eval_result = events().run(QStringLiteral("onEvaluate"), stand); |
||
215 | if (eval_result.isBool() && eval_result.toBool()==false) |
||
216 | return false; // do nothing |
||
217 | bool species_selective = false; |
||
218 | |||
219 | if( eval_result.isObject()) { |
||
220 | // expecting a list of probabilities.... |
||
221 | // create list if not present |
||
222 | if (mSpeciesSelectivity.isEmpty()) { |
||
223 | foreach(const Species *s, GlobalSettings::instance()->model()->speciesSet()->activeSpecies()) |
||
224 | mSpeciesSelectivity[s] = 1.; |
||
225 | } |
||
226 | // fetch from javascript |
||
227 | double rest_val = eval_result.property(QStringLiteral("rest")).isNumber() ? eval_result.property(QStringLiteral("rest")).toNumber() : 1.; |
||
228 | foreach(const Species *s, mSpeciesSelectivity.keys()) { |
||
229 | mSpeciesSelectivity[s] = limit( eval_result.property(s->id()).isNumber() ? eval_result.property(s->id()).toNumber() : rest_val, 0., 1.); |
||
230 | } |
||
231 | species_selective = true; |
||
232 | } |
||
233 | |||
234 | |||
990 | werner | 235 | FMTreeList trees(stand); |
236 | QString filter = custom.filter; |
||
237 | if (custom.minDbh>0.) { |
||
238 | if (!filter.isEmpty()) |
||
239 | filter += " and "; |
||
240 | filter += QString("dbh>%1").arg(custom.minDbh); |
||
241 | } |
||
242 | |||
243 | if (!filter.isEmpty()) |
||
244 | trees.load(filter); |
||
245 | else |
||
246 | trees.loadAll(); |
||
247 | |||
248 | if (custom.remainingStems>0 && custom.remainingStems>=trees.trees().size()) |
||
249 | return false; |
||
250 | |||
251 | if (trees.trees().size()==0) |
||
252 | return false; |
||
253 | |||
254 | // remove harvest flags. |
||
255 | clearTreeMarks(&trees); |
||
256 | |||
257 | // sort always by target variable (if it is stems, then simply by dbh) |
||
258 | bool target_dbh = custom.targetVariable=="stems"; |
||
259 | if (target_dbh) |
||
260 | trees.sort("dbh"); |
||
261 | else |
||
262 | trees.sort(custom.targetVariable); |
||
263 | |||
264 | // count trees and values (e.g. volume) in the defined classes |
||
265 | QVector<double> values = custom.classValues; // make a copy |
||
266 | QVector<double> tree_counts = custom.classValues; // make a copy |
||
267 | QVector<int> percentiles = custom.classPercentiles; // make a copy |
||
268 | |||
269 | QVector<QPair<Tree*, double> >::const_iterator it; |
||
270 | for (int i=0;i<values.count();++i) { |
||
271 | tree_counts[i]=0.; |
||
272 | } |
||
273 | int class_index = 0; |
||
274 | int n=0; |
||
275 | |||
276 | percentiles.first()=0; |
||
277 | double tree_count=trees.trees().count(); |
||
278 | double total_value = 0.; |
||
279 | for (it = trees.trees().constBegin(); it!=trees.trees().constEnd(); ++it, ++n) { |
||
280 | if (n/tree_count*100. > custom.classPercentiles[class_index+1]) { |
||
281 | ++class_index; |
||
282 | percentiles[class_index] = n; // then n'th tree |
||
283 | } |
||
284 | tree_counts[class_index]++; |
||
285 | total_value += target_dbh?1.:it->second; // e.g., sum of volume in the class, or simply count |
||
286 | } |
||
287 | while (++class_index<percentiles.size()) |
||
288 | percentiles[class_index]=n+1; |
||
289 | |||
290 | double target_value=0.; |
||
291 | if (custom.targetRelative) |
||
292 | target_value = custom.targetValue * total_value / 100.; |
||
293 | else |
||
294 | target_value = custom.targetValue * stand->area(); |
||
295 | |||
296 | if (!custom.relative) { |
||
297 | // TODO: does not work now!!! redo!! |
||
298 | // class values are given in absolute terms, e.g. 40m3/ha. |
||
299 | // this needs to be translated to relative classes. |
||
300 | // if the demand in a class cannot be met (e.g. planned removal of 40m3/ha, but there are only 20m3/ha in the class), |
||
301 | // then the "miss" is distributed to the other classes (via the scaling below). |
||
302 | for (int i=0;i<values.size();++i) { |
||
303 | if (values[i]>0){ |
||
304 | if (values[i]<=custom.classValues[i]*stand->area()) { |
||
305 | values[i] = 1.; // take all from the class |
||
306 | } else { |
||
307 | values[i] = custom.classValues[i]*stand->area() / values[i]; |
||
308 | } |
||
309 | } |
||
310 | } |
||
311 | // scale to 100 |
||
312 | double sum=0.; |
||
313 | for (int i=0;i<values.size();++i) |
||
314 | sum+=values[i]; |
||
315 | if (sum>0.){ |
||
316 | for (int i=0;i<values.size();++i) |
||
317 | values[i] *= 100./sum; |
||
318 | } |
||
319 | } |
||
320 | |||
321 | // ***************************************************************** |
||
322 | // *************** Main loop |
||
323 | // ***************************************************************** |
||
324 | for (int i=0;i<values.size();++i) |
||
325 | values[i] = 0; |
||
326 | |||
327 | bool finished = false; |
||
328 | int cls; |
||
329 | double p; |
||
330 | int removed_trees = 0; |
||
331 | double removed_value = 0.; |
||
332 | int no_tree_found = 0; |
||
333 | bool target_value_reached=false; |
||
334 | do { |
||
335 | // look up a random number: it decides in which class to select a tree: |
||
336 | p = nrandom(0,100); |
||
337 | for (cls=0;cls<values.size();++cls) { |
||
338 | if (p < custom.classPercentiles[cls+1]) |
||
339 | break; |
||
340 | } |
||
341 | // select a tree: |
||
1061 | werner | 342 | int tree_idx = selectRandomTree(&trees, percentiles[cls], percentiles[cls+1]-1, species_selective); |
990 | werner | 343 | if (tree_idx>=0) { |
344 | // stop harvesting, when the target size is reached: if the current tree would surpass the limit, |
||
345 | // a random number decides whether the tree should be included or not. |
||
346 | double tree_value = target_dbh?1.:trees.trees()[tree_idx].second; |
||
347 | if (custom.targetValue>0.) { |
||
348 | if (removed_value + tree_value > target_value) { |
||
349 | if (drandom()>0.5 || target_value_reached) |
||
350 | break; |
||
351 | else |
||
352 | target_value_reached = true; |
||
353 | } |
||
354 | |||
355 | } |
||
356 | trees.remove_single_tree(tree_idx, true); |
||
357 | removed_trees++; |
||
358 | removed_value += tree_value; |
||
359 | values[cls]++; |
||
360 | |||
361 | } else { |
||
1061 | werner | 362 | // tree_idx = -1: no tree found in list, -2: tree found but is not selected |
363 | no_tree_found += tree_idx == -1 ? 100 : 1; // empty list counts much more |
||
364 | if (no_tree_found > 1000) |
||
990 | werner | 365 | finished=true; |
366 | } |
||
367 | // stop harvesting, when the minimum remaining number of stems is reached |
||
368 | if (trees.trees().size()-removed_trees <= custom.remainingStems*stand->area()) |
||
369 | finished = true; |
||
370 | |||
371 | if (custom.targetValue>0. && removed_value > target_value) |
||
372 | finished = true; |
||
373 | |||
374 | } while (!finished); |
||
375 | |||
376 | if (stand->trace()) { |
||
377 | qCDebug(abe) << stand->context() << "custom-thinning: removed" << removed_trees << ". Reached cumulative 'value' of:" << removed_value << "(planned value:" << target_value << "). #of no trees found:" << no_tree_found << "; stand-area:" << stand->area(); |
||
378 | for (int i=0;i<values.count();++i) |
||
379 | qCDebug(abe) << stand->context() << "class" << i << ": removed" << values[i] << "of" << percentiles[i+1]-percentiles[i]; |
||
380 | } |
||
381 | |||
382 | return true; |
||
383 | |||
384 | } |
||
385 | |||
1061 | werner | 386 | int ActThinning::selectRandomTree(FMTreeList *list, const int pct_min, const int pct_max, const bool selective) |
990 | werner | 387 | { |
388 | // pct_min, pct_max: the indices of the first and last tree in the list to be looked for, including pct_max |
||
389 | // seek a tree in the class 'cls' (which has not already been removed); |
||
390 | int idx; |
||
391 | if (pct_max<pct_min) |
||
392 | return -1; |
||
393 | // search randomly for a couple of times |
||
394 | for (int i=0;i<5;i++) { |
||
395 | idx = irandom(pct_min, pct_max); |
||
396 | Tree *tree = list->trees().at(idx).first; |
||
397 | if (!tree->isDead() && !tree->isMarkedForHarvest() && !tree->isMarkedForCut()) |
||
1061 | werner | 398 | return selectSelectiveSpecies(list, selective, idx); |
990 | werner | 399 | } |
400 | // not found, now walk in a random direction... |
||
401 | int direction = 1; |
||
402 | if (drandom()>0.5) direction=-1; |
||
403 | // start in one direction from the last selected random position |
||
404 | int ridx=idx; |
||
405 | while (ridx>=pct_min && ridx<pct_max) { |
||
406 | Tree *tree = list->trees().at(ridx).first; |
||
407 | if (!tree->isDead() && !tree->isMarkedForHarvest() && !tree->isMarkedForCut()) |
||
1061 | werner | 408 | return selectSelectiveSpecies(list, selective, ridx); |
990 | werner | 409 | |
410 | ridx+=direction; |
||
411 | } |
||
412 | // now look in the other direction |
||
413 | direction = -direction; |
||
414 | ridx = idx; |
||
415 | while (ridx>=pct_min && ridx<pct_max) { |
||
416 | Tree *tree = list->trees().at(ridx).first; |
||
417 | if (!tree->isDead() && !tree->isMarkedForHarvest() && !tree->isMarkedForCut()) |
||
1061 | werner | 418 | return selectSelectiveSpecies(list, selective, ridx); |
990 | werner | 419 | |
420 | ridx+=direction; |
||
421 | } |
||
422 | |||
423 | // no tree found in the entire range |
||
424 | return -1; |
||
425 | |||
426 | |||
427 | } |
||
428 | |||
1061 | werner | 429 | int ActThinning::selectSelectiveSpecies(FMTreeList *list, const bool is_selective, const int index) |
430 | { |
||
431 | if (!is_selective) |
||
432 | return index; |
||
433 | // check probability for species [0..1, 0: 0% chance to take a tree of that species] against a random number |
||
434 | if (mSpeciesSelectivity[list->trees()[index].first->species()] < drandom()) |
||
435 | return index; // take the tree |
||
436 | |||
437 | // a tree was found but is not going to be removed |
||
438 | return -2; |
||
439 | } |
||
440 | |||
990 | werner | 441 | void ActThinning::clearTreeMarks(FMTreeList *list) |
442 | { |
||
443 | QVector<QPair<Tree*, double> >::const_iterator it; |
||
444 | for (it=list->trees().constBegin(); it!=list->trees().constEnd(); ++it) { |
||
445 | Tree *tree = it->first; |
||
446 | if (tree->isMarkedForHarvest()) |
||
447 | tree->markForHarvest(false); |
||
448 | if (tree->isMarkedForCut()) |
||
449 | tree->markForCut(false); |
||
450 | |||
451 | } |
||
452 | } |
||
453 | |||
454 | bool ActThinning::evaluateSelective(FMStand *stand) |
||
455 | { |
||
456 | markCropTrees(stand); |
||
457 | return true; |
||
458 | } |
||
459 | |||
460 | bool ActThinning::markCropTrees(FMStand *stand) |
||
461 | { |
||
462 | // tree list from current exeution context |
||
463 | FMTreeList *treelist = ForestManagementEngine::instance()->scriptBridge()->treesObj(); |
||
464 | treelist->setStand(stand); |
||
465 | treelist->loadAll(); |
||
466 | clearTreeMarks(treelist); |
||
467 | |||
468 | // get the 2x2m grid for the current stand |
||
469 | Grid<float> &grid = treelist->localGrid(); |
||
470 | // clear (except the out of "stand" pixels) |
||
471 | for (float *p=grid.begin(); p!=grid.end(); ++p) |
||
472 | if (*p > -1.f) |
||
473 | *p = 0.f; |
||
474 | |||
475 | int target_n = mSelectiveThinning.N * stand->area(); |
||
476 | |||
477 | if (target_n>=treelist->trees().count()) |
||
478 | target_n = treelist->trees().count(); |
||
479 | |||
480 | int max_target_n = qMax(target_n * 1.5, treelist->trees().count()/2.); |
||
481 | if (max_target_n>=treelist->trees().count()) |
||
482 | max_target_n = treelist->trees().count(); |
||
483 | // we have 2500 px per ha (2m resolution) |
||
484 | // if each tree dominates its Moore-neighborhood, 2500/9 = 267 trees are possible (/ha) |
||
485 | // if *more* trees should be marked, some trees need to be on neighbor pixels: |
||
486 | // pixels = 2500 / N; if 9 px are the Moore neighborhood, the "overprint" is N*9 / 2500. |
||
487 | // N*)/2500 -1 = probability of having more than zero overlapping pixels |
||
488 | double overprint = (mSelectiveThinning.N * 9) / double(cPxPerHectare) - 1.; |
||
489 | |||
490 | // order the list of trees according to tree height |
||
491 | treelist->sort("-height"); |
||
492 | |||
493 | // start with a part of N and 0 overlap |
||
494 | int n_found = 0; |
||
495 | int tests=0; |
||
496 | for (int i=0;i<target_n/3;i++) { |
||
497 | float f=testPixel(treelist->trees().at(i).first->position(), grid); ++tests; |
||
498 | if (f==0.f) { |
||
499 | setPixel(treelist->trees().at(i).first->position(), grid); |
||
500 | treelist->trees()[i].first->markCropTree(true); |
||
501 | ++n_found; |
||
502 | } |
||
503 | } |
||
504 | // continue with a higher probability --- incr |
||
505 | for (int run=0;run<4;++run) { |
||
506 | for (int i=0; i<max_target_n;++i) { |
||
507 | if (treelist->trees().at(i).first->isMarkedAsCropTree()) |
||
508 | continue; |
||
509 | |||
510 | float f=testPixel(treelist->trees().at(i).first->position(), grid); ++tests; |
||
511 | |||
512 | if ( (f==0.f) || |
||
513 | (f<=2.f && drandom()<overprint) || |
||
514 | (run==1 && f<=4 && drandom()<overprint) || |
||
515 | (run==2 && drandom()<overprint) || |
||
516 | (run==3) ) { |
||
517 | |||
518 | setPixel(treelist->trees().at(i).first->position(), grid); |
||
519 | treelist->trees()[i].first->markCropTree(true); |
||
520 | ++n_found; |
||
521 | if (n_found == target_n) |
||
522 | break; |
||
523 | } |
||
524 | } |
||
525 | if (n_found==target_n) |
||
526 | break; |
||
527 | } |
||
528 | |||
529 | // now mark the competitors: |
||
530 | // competitors are trees up to 75th percentile of the tree population that |
||
531 | int n_competitor=0; |
||
532 | for (int run=0;run<3;++run) { |
||
533 | for (int i=0; i<max_target_n;++i) { |
||
534 | Tree *tree = treelist->trees().at(i).first; |
||
535 | if (tree->isMarkedAsCropTree() || tree->isMarkedAsCropCompetitor()) |
||
536 | continue; |
||
537 | |||
538 | float f=testPixel(treelist->trees().at(i).first->position(), grid); ++tests; |
||
539 | |||
540 | if ( (f>12.f) || |
||
541 | (run==1 && f>8) || |
||
542 | (run==2 && f>4) ) { |
||
543 | tree->markCropCompetitor(true); |
||
544 | n_competitor++; |
||
545 | } |
||
546 | } |
||
547 | } |
||
548 | |||
549 | |||
550 | if (FMSTP::verbose()) { |
||
551 | qCDebug(abe) << stand->context() << "Thinning::markCropTrees: marked" << n_found << "(plan:" << target_n << ") from total" << treelist->trees().count() |
||
552 | << ". Tests performed:" << tests << "marked as competitors:" << n_competitor; |
||
553 | } |
||
554 | return n_found==target_n; |
||
555 | |||
556 | } |
||
557 | |||
558 | float ActThinning::testPixel(const QPointF &pos, Grid<float> &grid) |
||
559 | { |
||
560 | // check Moore neighborhood |
||
561 | int x=grid.indexAt(pos).x(); |
||
562 | int y=grid.indexAt(pos).y(); |
||
563 | |||
564 | float sum = 0.f; |
||
565 | sum += grid.isIndexValid(x-1,y-1) ? grid.valueAtIndex(x-1, y-1) : 0; |
||
566 | sum += grid.isIndexValid(x,y-1) ? grid.valueAtIndex(x, y-1) : 0; |
||
567 | sum += grid.isIndexValid(x+1,y-1) ? grid.valueAtIndex(x+1, y-1) : 0; |
||
568 | |||
569 | sum += grid.isIndexValid(x-1,y) ? grid.valueAtIndex(x-1, y) : 0; |
||
570 | sum += grid.isIndexValid(x,y) ? grid.valueAtIndex(x, y) : 0; |
||
571 | sum += grid.isIndexValid(x+1,y) ? grid.valueAtIndex(x+1, y) : 0; |
||
572 | |||
573 | sum += grid.isIndexValid(x-1,y+1) ? grid.valueAtIndex(x-1, y+1) : 0; |
||
574 | sum += grid.isIndexValid(x,y+1) ? grid.valueAtIndex(x, y+1) : 0; |
||
575 | sum += grid.isIndexValid(x+1,y+1) ? grid.valueAtIndex(x+1, y+1) : 0; |
||
576 | |||
577 | return sum; |
||
578 | } |
||
579 | |||
580 | void ActThinning::setPixel(const QPointF &pos, Grid<float> &grid) |
||
581 | { |
||
582 | // check Moore neighborhood |
||
583 | int x=grid.indexAt(pos).x(); |
||
584 | int y=grid.indexAt(pos).y(); |
||
585 | |||
586 | if (grid.isIndexValid(x-1,y-1)) grid.valueAtIndex(x-1, y-1)++; |
||
587 | if (grid.isIndexValid(x,y-1)) grid.valueAtIndex(x, y-1)++; |
||
588 | if (grid.isIndexValid(x+1,y-1)) grid.valueAtIndex(x+1, y-1)++; |
||
589 | |||
590 | if (grid.isIndexValid(x-1,y)) grid.valueAtIndex(x-1, y)++; |
||
591 | if (grid.isIndexValid(x,y)) grid.valueAtIndex(x, y) += 3; // more impact on center pixel |
||
592 | if (grid.isIndexValid(x+1,y)) grid.valueAtIndex(x+1, y)++; |
||
593 | |||
594 | if (grid.isIndexValid(x-1,y+1)) grid.valueAtIndex(x-1, y+1)++; |
||
595 | if (grid.isIndexValid(x,y+1)) grid.valueAtIndex(x, y+1)++; |
||
596 | if (grid.isIndexValid(x+1,y+1)) grid.valueAtIndex(x+1, y+1)++; |
||
597 | } |
||
598 | |||
599 | |||
600 | } // namespace |