Rev 1221 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
656 | werner | 1 | #ifndef SIMPLERNG_H |
2 | #define SIMPLERNG_H |
||
3 | |||
4 | // A simple random number generator based on George Marsaglia's MWC (Multiply With Carry) generator. |
||
5 | // This is not intended to take the place of the library's primary generator, Mersenne Twister. |
||
6 | // Its primary benefit is that it is simple to extract its state. |
||
7 | |||
8 | // Source: http://www.johndcook.com/cpp_random_number_generation.html |
||
9 | class SimpleRNG |
||
10 | { |
||
11 | public: |
||
12 | |||
13 | SimpleRNG(); |
||
14 | |||
15 | // Seed the random number generator |
||
16 | void SetState(unsigned int u, unsigned int v); |
||
17 | |||
18 | // Extract the internal state of the generator |
||
19 | void GetState(unsigned int& u, unsigned int& v); |
||
20 | |||
21 | // A uniform random sample from the open interval (0, 1) |
||
22 | double GetUniform(); |
||
23 | |||
24 | // A uniform random sample from the set of unsigned integers |
||
25 | unsigned int GetUint(); |
||
26 | |||
27 | // This stateless version makes it more convenient to get a uniform |
||
28 | // random value and transfer the state in and out in one operation. |
||
29 | double GetUniform(unsigned int& u, unsigned int& v); |
||
30 | |||
31 | // This stateless version makes it more convenient to get a random unsigned integer |
||
32 | // and transfer the state in and out in one operation. |
||
33 | unsigned int GetUint(unsigned int& u, unsigned int& v); |
||
34 | |||
35 | // Normal (Gaussian) random sample |
||
36 | double GetNormal(double mean, double standardDeviation); |
||
37 | |||
38 | // Exponential random sample |
||
39 | double GetExponential(double mean); |
||
40 | |||
41 | // Gamma random sample |
||
42 | double GetGamma(double shape, double scale); |
||
43 | |||
44 | // Chi-square sample |
||
45 | double GetChiSquare(double degreesOfFreedom); |
||
46 | |||
47 | // Inverse-gamma sample |
||
48 | double GetInverseGamma(double shape, double scale); |
||
49 | |||
50 | // Weibull sample |
||
51 | double GetWeibull(double shape, double scale); |
||
52 | |||
53 | // Cauchy sample |
||
54 | double GetCauchy(double median, double scale); |
||
55 | |||
56 | // Student-t sample |
||
57 | double GetStudentT(double degreesOfFreedom); |
||
58 | |||
59 | // The Laplace distribution is also known as the double exponential distribution. |
||
60 | double GetLaplace(double mean, double scale); |
||
61 | |||
62 | // Log-normal sample |
||
63 | double GetLogNormal(double mu, double sigma); |
||
64 | |||
65 | // Beta sample |
||
66 | double GetBeta(double a, double b); |
||
67 | |||
68 | // Poisson sample |
||
69 | int GetPoisson(double lambda); |
||
70 | |||
71 | private: |
||
72 | unsigned int m_u, m_v; |
||
73 | int PoissonLarge(double lambda); |
||
74 | int PoissonSmall(double lambda); |
||
75 | double LogFactorial(int n); |
||
76 | }; |
||
77 | |||
78 | |||
79 | #endif |